Alabama Comprehensive Assessment Program (ACAP)

Summative

Item Specifications

Mathematics

Grade 8

Alabama Comprehensive Assessment Program - Summative

SUMMATIVE

Alabama Item Specifications Grade 8 Mathematics

Alabama Comprehensive Assessment Program (ACAP)

Summative

The Alabama Comprehensive Assessment Program (ACAP) Summative item specifications are based on the development of summative assessments that measure the Alabama Course of Study Standards. The item specifications define the purpose of the ACAP Summative and provide important information regarding the content to be measured. The item specifications also serve as a road map to guide Alabama educators in the development and subsequent review of items that best measure the Course of Study Standards for a given grade and subject area. Each item specification is aligned to the given Alabama content area, cluster, and standard and includes the following key information:

- Evidence statements
- Content limits/constraints
- Recommended Webb's Depth of Knowledge (DOK) or cognitive levels
- Calculator usage
- Item types for measuring a given standard
- Information regarding whether or not context is allowable
- Sample item stem information

The appendix to this document includes sample test items, along with information about the item, including item type, page reference, alignment, depth of knowledge, and answer key. These sample items are provided to be an additional resource for educators to help guide instruction and assessment-building in the classroom. Teachers can use the sample items as models when leading classroom discussion as well as creating items for classroom tests or quizzes. In each sample item, the level of rigor needed in the item in order to align with the content standard is evident.

Alabama Comprehensive Assessment Program - Summative
2023 Item Specifications
S U M M ATIVE

2023 Item Specifications

Definitions

Course of Study Standards: The Course of Study Standards are a set of content curriculum statements that define what students should know and be able to do at a given grade level. The goal is to prepare students for future opportunities and options in the workplace and for everyday life. Through the implementation of the Alabama Course of Study for Mathematics, students will be well equipped for the workforce upon graduation or ready to pursue higher levels of education in Alabama's colleges and universities.

Alabama Content Areas: Alabama content areas are large groups of related clusters and content standards. Because mathematics is a connected subject, standards from different Alabama content areas may sometimes be closely related.

Clusters: Clusters are groups of related content standards. Because mathematics is a connected subject, standards from different clusters may sometimes be closely related.

Standards: Standards define what students should understand (know) and be able to do at the conclusion of a course or grade. The standard text in the item specification is preceded by a standard identifier (e.g., 4.OA.1) to indicate the student grade level as fourth (4), the Alabama content area as Operations and Algebraic Thinking (OA), and the standard number as one (1).

Evidence Statements: Evidence statements are closely aligned to the standard and do not deviate from the requirements of the standard. Standards that are substantial in content do provide for a better opportunity to "unpack the standard," which is the case for many of the Alabama Course of Study Standards. The evidence statements serve that purpose.

Assessment Limits/Content Constraints: Assessment limits and/or content constraints define the range of content knowledge and the degree of difficulty allowable when items are written to measure a given standard.

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications
S U M M ATIVE

Depth of Knowledge (DOK): Depth of knowledge involves the cognitive complexity or the nature of thinking required for a given item. Most recently, Webb's Depth of Knowledge levels are used in the development of items for cognitive demand. Therefore, when developing items for depth of knowledge, the item should be as demanding cognitively as what the actual standard expects. Webb's Depth of Knowledge includes four levels, from the lowest (basic recall) to the highest (extended thinking). The mathematics ACAP Summative assessment items are written to one of three cognitive levels of complexity:

- Level 1: Recall
- Level 2: Application of a Skill/Concept
- Level 3: Strategic Thinking

Item Types: The ACAP Summative assessments are composed of various item types. These item types are described in the following section.

Context: Context provides information regarding the types of stimulus materials that can be used in the items. If a context is allowable, it means that the item may have context. If context is required, then the item measuring the given standard must have context. If no context is noted, then the items measuring the given standard should not have context.

Sample Stem Information: This statement explains what students are expected to do when they respond to a given item.

Alabama Comprehensive Assessment Program - Summative
2023 Item Specifications
S U M M ATIVE

Item Types

The Alabama Comprehensive Assessment Program (ACAP) Summative assessments are composed of various item types. These item types are described below.

Multiple-Choice (MC) Items: MC items have four answer choices, including three distractors and one correct answer. Distractors for mathematics represent common misconceptions, incorrect logic, incorrect application of an algorithm, computational errors, etc. A correct response to an MC item is worth one score point in the mathematics ACAP Summative.

Multiple-Select (MS) Items: MS items are similar in structure to MC items. However, unlike an MC item, an MS item has more than four options and more than one correct answer. In other words, multiple responses are required for a given item. For mathematics, there are two types of MS configurations. One has five answer options, two of which are correct, and the other has six answer options, two or three of which are correct. Directions for the number of options to select are provided with each item. A correct response to an MS item is worth one score point in the mathematics ACAP Summative.

Short-Answer (SA) Items: SA items are constructed-response items that require a keyed response from the student. The number of characters is limited to a relatively small number in order to facilitate autoscoring. The types of characters allowed can also be limited to text only, numbers only, or a mix. In the mathematics ACAP Summative, this item type is autoscored using scoring guidelines for the correct answer. A correct response to an SA item is worth one score point in the mathematics ACAP Summative.

Alabama Comprehensive Assessment Program - Summative
2023 Item Specifications
S U M M ATIVE

2023 Item Specifications

Technology-Enhanced (TE) Items: TE items share the same functional structure as traditional paper-and-pencil test items; however, the expansive features and functions of a computer-based medium allow for the incorporation of technical enhancements into traditional elements of a test item, such as the stem, the stimulus (if any), the response area, or a combination of all three. These items require the use of one or more tools. A correct response to a TE item is worth one score point in the mathematics ACAP Summative. Mathematics TE items include, but are not limited to, the following:

- Angle Draw Input: These TE items provide a student with a given ray, and then the student completes the angle by drawing a second ray.
- Drag-and-Drop Input: These TE items provide a student with draggable entities that can be configured to be used once or multiple times.
- Drop-Down List Input: These TE items allow a student to select elements in drop-down lists that can be embedded within text or tables.
- Hot Spot: These TE items allow for an image to be highlighted or replaced with another image when selected by the student.
- Line Plot Input: These TE items provide another way for a student to graphically represent data when the structure is provided. Certain labeling on the line plot can be done by the student.
- Matching: These TE items allow for the use of text or graphics as the matching objects. The student selects one object and then selects a second object to connect them.
- Matching Table: These TE items include a table with multiple rows and columns, and the student makes matches between the given elements in the rows and columns. The table can be customized to allow for only a single selection in a row or column or for multiple selections within each.
- Number Line Input: These TE items allow a student to create a number line graph that might involve plotting points only or points and lines. Both closed and open points are available, as well as line segments and rays.

Standards for Mathematical Practice

The Standards for Mathematical Practice are based on important "processes and proficiencies" that have longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics (NCTM) process standards of problem-solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: Helping Children Learn Mathematics. These proficiencies include adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations, and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently, and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy). Because these practices are an important part of the curriculum, they will be assessed throughout the mathematics ACAP Summative. The eight Standards for Mathematical Practice are listed below, but more detail is provided in the Alabama Course of Study for Mathematics.

- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Use appropriate tools strategically.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

S U M M ATIVE

Mathematics Reference Sheets

An online reference sheet is available as a pop-up window in certain grades.

Grade	Conversions	Formulas
2	No	No
3	No	No
4	Yes	Yes
5	Yes	Yes
6	Yes	Yes
7	Yes	Yes
8	Yes	Yes

Item Specifications for Mathematics

Item specifications are one of the key requirements for a high-quality, legally defensible, standards-based assessment. Item specifications help define important characteristics of the items (i.e., test questions) developed for each standard. These item specifications provide guidelines to help clarify the focus of what is to be assessed, what items may include, and what items may not include (i.e., assessment limits). Item specifications are used by item writers, item editors, and item reviewers as a common reference throughout the item-development process, from initial writing to final approval. These item specifications are based on the 2019 Alabama Course of Study Standards for Mathematics.
$\left.\left.\begin{array}{l|l|}\hline \text { Content Area } & \text { NSO: Number Systems and Operations } \\ \hline \text { Cluster } & \begin{array}{l}\text { Understand that the real number system is composed of rational and } \\ \text { irrational numbers. }\end{array} \\ \hline \begin{array}{l}\text { Standard } \\ \text { (2019 AL COS) }\end{array} & \begin{array}{l}\text { 8.NSO.1a: Define the real number system as composed of rational } \\ \text { and irrational numbers. } \\ \text { a. Explain that every number has a decimal expansion; for rational } \\ \text { numbers, the decimal expansion repeats or terminates. }\end{array} \\ \hline \text { Evidence Statements } & \begin{array}{l}\text { The student will explain that every number has a decimal expansion; } \\ \text { for rational numbers, the decimal expansion repeats or terminates. }\end{array} \\ \hline \begin{array}{l}\text { Assessment Limits / } \\ \text { Content Constraints }\end{array} & \text { Tasks do not have a context. } \\ \hline \begin{array}{l}\text { DOK(s) } \\ \text { Calculator } \\ \text { Item Type(s) }\end{array} & \text { 1, 2, or 3 } \\ \text { Context }\end{array} \quad \begin{array}{ll}\text { NO - a calculator will not be available for items }\end{array} \right\rvert\, \begin{array}{ll}\text { MC, MS, SA, TE }\end{array}\right]$

SUMMATIVE

Content Area	NSO: Number Systems and Operations
Cluster	Understand that the real number system is composed of rational and irrational numbers.
Standard (2019 AL COS)	8.NSO.1b: Define the real number system as composed of rational and irrational numbers. b. Convert a decimal expansion that repeats into a rational number. Evidence Statements
The student will convert a decimal expansion that repeats into a rational number.	
Assessment Limits / Content Constraints	Tasks do not have a context.
DOK(s) Calculator Item Type(s) Context	1, 2, or 3
Sa - a calculator will not be available for items Stem Information (as applicable)	MC, MS, SA, TE

SUMMATIVE

Content Area
Cluster
Standard (2019 AL COS)
Evidence Statements

Assessment Limits / Content Constraints DOK(s)
Calculator Item Type(s)
Context
Sample Stem Information (as applicable)

Understand that the real number system is composed of rational and irrational numbers.
8.NSO.2: Locate rational approximations of irrational numbers on a number line, compare their sizes, and estimate the values of the irrational numbers.

The student will locate rational approximations of irrational numbers on a number line, compare their sizes, and estimate the values of the irrational numbers.

Tasks do not have a context.

1, 2, or 3
NO - a calculator will not be available for items
MC, MS, SA, TE
Not Allowable
Given comparisons involving irrational numbers, identify which comparison is correct.

Given an irrational number, identify its approximate place on the number line.

Given an irrational number, identify or generate a range of numbers that the given number is within.

Given an expression involving irrational numbers, estimate the value.

Given a point on a number line, identify the rational approximation.
Given an estimated value, identify which expression most closely approximates the estimated value.

Alabama Comprehensive Assessment Program - Summative

S U M M ATIVE

Content Area	AF: Algebra and Functions
Cluster	Apply concepts of integer exponents and radicals.
Standard (2019 AL COS)	8.AF.3: Develop and apply properties of integer exponents to generate equivalent numerical and algebraic expressions.
Evidence Statements	The student will develop and apply properties of integer exponents to generate equivalent numerical and algebraic expressions.
Assessment Limits / Content Constraints	Tasks do not have a context. Tasks focus on properties and equivalence, not on simplification.
DOK(s)	Tasks should involve a single common base or a potential common base.
Calculator Item Type(s)	1, 2, or 3 Context
MO, MS, SA, TE	
Sample Stem Information (as applicable)	Given an exponential expression, number, or exponential computation, generate or identify its equivalent in another form.

Alabama Comprehensive Assessment Program - Summative

S U M M ATIVE

Content Area
Cluster
Standard (2019 AL COS)
Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

AF: Algebra and Functions

Apply concepts of integer exponents and radicals.
8.AF.4a: Use square root and cube root symbols to represent solutions to equations.
a. Evaluate square roots of perfect squares (less than or equal to 225) and cube roots of perfect cubes (less than or equal to 1000).

The student will evaluate square roots of perfect squares (less than or equal to 225) and cube roots of perfect cubes (less than or equal to 1000).

Tasks may or may not have a context.
Students are not required to simplify expressions such as $\sqrt{ } 8$ to $2 \sqrt{ } 2$.

1, 2, or 3
NO - a calculator will not be available for items
MC, MS, SA, TE
Allowable
Given a simple quadratic or cubic equation, determine or identify the number of solutions for that equation.

Given a simple quadratic or cubic equation, generate or identify the solution to the equation.

Given a number in square or cubic root notation, generate or identify the root.

S UMMATIVE

Content Area	AF: Algebra and Functions
Cluster	Apply concepts of integer exponents and radicals.
Standard (2019 AL COS)	8.AF.4b: Use square root and cube root symbols to represent solutions to equations. b. Explain that the square root of a non-perfect square is irrational. Evidence Statements
The student will explain that the square root of a non-perfect square is irrational.	
Assessment Limits / Content Constraints	Tasks may or may not have a context.
DOK(s) Calculator Item Type(s) Context	1, 2, or 3

AF: Algebra and Functions

Apply concepts of integer exponents and radicals.
8.AF.5: Estimate and compare very large or very small numbers in scientific notation.

Evidence Statements
The student will estimate and compare very large or very small numbers in scientific notation.

Assessment Limits / Content Constraints
DOK(s)
Calculator
Item Type(s)
Context

Sample Stem Information (as applicable)

1, 2, or 3
NO - a calculator will not be available for items
MC, MS, SA, TE
Allowable
Given a situation with at least two numbers expressed in scientific notation, determine how many times as much as the other number one of the numbers is.

Given one number expressed in scientific notation along with a comparative value (e.g., 10 times as much), determine the other number expressed in scientific notation.

AF: Algebra and Functions

Apply concepts of integer exponents and radicals.
8.AF.6a: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.
a. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.

Evidence Statements

Assessment Limits / Content Constraints

The student will use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.

Tasks have "thin context" or no context.
Rules or conventions for significant figures are not assessed.
Tasks may involve both decimal and scientific notation.
DOK(s)
Calculator
Item Type(s)
Context

Sample Stem
Information
(as applicable)
1,2 , or 3
NO - a calculator will not be available for items
MC, MS, SA, TE
Allowable

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications
S U M M ATIVE

Content Area	AF: Algebra and Functions
Cluster	Apply concepts of integer exponents and radicals.
Standard (2019 AL COS)	8.AF.6b: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. b. Interpret scientific notation that has been generated by technology.
Evidence Statements	The student will interpret scientific notation that has been generated by technology.
Assessment Limits / Content Constraints	Tasks have "thin context" or no context.
Rules or conventions for significant figures are not assessed.	
DOK(s)	Tasks may involve both decimal and scientific notation. technology as 4.5 $\times 10^{-2}$.
Calculator to recognize 4.5E-2 (or 4.5e-2) from Item Type(s)	1, 2, or 3
Context	MC, MS, SA, TE

CORPORATION

AF: Algebra and Functions

Analyze the relationship between proportional and non-proportional situations.
8.AF.7: Determine whether a relationship between two variables is proportional or non-proportional.

The student will determine whether a relationship between two variables is proportional or non-proportional.

Assessment Limits / Content Constraints
DOK(s)
Calculator Item Type(s)
Context

Sample Stem Information (as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable

S U M M ATIVE

Content Area
Cluster
Standard (2019 AL COS)

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

AF: Algebra and Functions

Analyze the relationship between proportional and non-proportional situations.
8.AF.8a: Graph proportional relationships.
a. Interpret the unit rate of a proportional relationship, describing the constant of proportionality as the slope of the graph which goes through the origin and has the equation $y=m x$ where m is the slope.

The student will graph proportional relationships.
The student will interpret the unit rate of a proportional relationship, describing the constant of proportionality as the slope of the graph which goes through the origin and has the equation $y=m x$ where m is the slope.

Tasks may or may not contain context.
1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a scenario presenting proportional relationships in a variety of methods, interpret the unit rate.

Given a scenario presenting proportional relationships in a variety of methods, compare between the relationships.

AF: Algebra and Functions

Analyze the relationship between proportional and non-proportional situations.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)
8.AF.9a: Interpret $y=m x+b$ as defining a linear equation whose graph is a line with m as the slope and b as the y-intercept.
a. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in a coordinate plane.

The student will use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in a coordinate plane.

Tasks do not have a context.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Not Allowable
Given a coordinate plane, use similar triangles to determine key features about the slopes of the triangles.

AF: Algebra and Functions

Analyze the relationship between proportional and non-proportional situations.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)
8.AF.9b: Interpret $y=m x+b$ as defining a linear equation whose graph is a line with m as the slope and b as the y-intercept.
b. Given two distinct points in a coordinate plane, find the slope of the line containing the two points and explain why it will be the same for any two distinct points on the line.

The student will find the slope of the line containing two distinct points in a coordinate plane and explain why it will be the same for any two distinct points on the line.

Tasks do not have a context.
Tasks may require students, when given a non-vertical line in the coordinate plane, to choose two pairs of points and record the rise, run, and slope relative to each pair and verify that they are the same.

1,2 , or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Not Allowable

AF: Algebra and Functions
Analyze the relationship between proportional and non-proportional situations.
8.AF.9c: Interpret $y=m x+b$ as defining a linear equation whose graph is a line with m as the slope and b as the y-intercept.
c. Graph linear relationships, interpreting the slope as the rate of change of the graph and the y-intercept as the initial value.

The student will graph linear relationships, interpreting the slope as the rate of change of the graph and the y-intercept as the initial value.

Tasks may or may not have a context.

1,2 , or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable绪

Sample Stem Information (as applicable)

DOK(s)
Calculator Item Type(s)
Context

Content Area
Cluster
Standard (2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

AF: Algebra and Functions

Analyze the relationship between proportional and non-proportional situations.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)
8.AF.9d: Interpret $y=m x+b$ as defining a linear equation whose graph is a line with m as the slope and b as the y-intercept.
d. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts.

The student will demonstrate that the linear equations for two different sets of points that have equal slopes may have different y-intercepts.

Tasks do not have a context.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Not Allowable

AF: Algebra and Functions

Analyze the relationship between proportional and non-proportional situations.
Standard
(2019 AL COS)

Evidence Statements
8.AF.10: Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems.

The student will compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems.

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable

AF: Algebra and Functions

Analyze and solve linear equations and systems of two linear equations.

Standard

(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context

Sample Stem Information (as applicable)
8.AF.11a: Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.
a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x=a, a=$ a, or $a=b$ (where a and b are different numbers).

The student will determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x=a, a=a$, or $a=b$ (where a and b are different numbers).

Tasks do not have a context.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Not Allowable
Given a linear situation where only one unknown is present, solve for that unknown.

Given an equation in one variable, determine whether the equation has one solution, infinitely many solutions, or no solution.

Solve linear equations that require the distributive property and/or collecting like terms.

AF: Algebra and Functions

Analyze and solve linear equations and systems of two linear equations.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)
8.AF.11b: Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.
b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem.

The student will represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable

Content Area	AF: Algebra and Functions
Cluster	Analyze and solve linear equations and systems of two linear equations.
Standard (2019 AL COS)	8.AF.12a: Solve systems of two linear equations in two variables by graphing and substitution. a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.
Evidence Statements	The student will explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.
Assessment Limits / Content Constraints	Tasks do not have a context. DOK(s) Calculator Item Type(s) Context
1, 2, or 3	
YES - a calculator will be available for items	
Sample Stem	Not Allowable SE

AF: Algebra and Functions

Analyze and solve linear equations and systems of two linear equations.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)
8.AF.12b: Solve systems of two linear equations in two variables by graphing and substitution.
b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems.

The student will interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems.

Tasks have whole-number or integer coefficients, with one coefficient in either or both equations possibly being zero.

Tasks may assess solving by inspection.
1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a system of linear equations, identify the solution of the system of equations.

Given the graph of a system of linear equations, identify the solution of the system of equations.

Given a context-based problem that can be modeled by a system of linear equations, determine the solution.

Content Area
Cluster
Standard (2019 AL COS)
Evidence Statements

DOK(s)
Calculator Item Type(s)
Context

Sample Stem Information (as applicable)

AF: Algebra and Functions

Explain, evaluate, and compare functions.
8.AF.13: Determine whether a relation is a function, defining a function as a rule that assigns to each input (independent value) exactly one output (dependent value), and given a graph, table, mapping, or set of ordered pairs.

The student will determine whether a relation is a function, defining a function as a rule that assigns to each input (independent value) exactly one output (dependent value), and given a graph, table, mapping, or set of ordered pairs.

Tasks do not involve the "vertical line test."
Some of the functions in tasks are nonnumerical.
Tasks should involve clearly defined inputs and outputs.
Functions are limited to those with real number inputs and outputs.
Tasks may require students to graph functions in the coordinate plane or read inputs and outputs from the graph of a function in the coordinate plane.

Tasks may require students to tell whether a set of points in the plane represents a function.

Note: Function notation is not required in Grade 8.
1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable

Given a relation in a variety of representations, determine whether the relation is a function.

AF: Algebra and Functions

Explain, evaluate, and compare functions.
8.AF.14: Evaluate functions defined by a rule or an equation, given values for the independent variable.

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator Item Type(s)
Context

Sample Stem Information (as applicable)

AF: Algebra and Functions

Explain, evaluate, and compare functions.
8.AF.15a: Compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions.
a. Distinguish between linear and non-linear functions.

The student will compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions.

The student will distinguish between linear and non-linear functions.
Tasks have "thin context" or no context.
Equations can be presented in forms other than $y=m x+b$.
Tasks may require students to give examples of equations that are nonlinear or pairs of points to show a function is nonlinear.

Note: Function notation is not required in Grade 8.
1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given two different linear functions presented in different ways, make a comparison of one or more properties of the two functions.

Given a relation presented in verbal form, with a graph, by an equation, or by a set of ordered pairs, determine whether the relation is a linear function.

Given a set of functions, identify the function that is or is not linear.

Content Area	AF: Algebra and Functions
Cluster	Use functions to model relationships between quantities.
Standard (2019 AL COS)	8.AF.16a: Construct a function to model a linear relationship between two variables. a. Interpret the rate of change (slope) and initial value of the linear function from a description of a relationship or from two points in a table or graph.
Evidence Statements	The student will construct a function to model a linear relationship between two variables.
The student will interpret the rate of change (slope) and initial value of the linear function from a description of a relationship or from two points in a table or graph.	
Content Constraints	Tasks may or may not have a context. Note: Function notation is not required in Grade 8.
DOK(s) 1, 2, or 3 Calculator YES - a calculator will be available for items Item Type(s) MC, MS, SA, TE	
Context	Allowable
Sample Stem Information (as applicable)	Given a unit rate of change in a situation, determine the corresponding equation and vice versa. Given a linear relationship presented in a variety of methods, determine or analyze or identify different attributes related to the function.

AF: Algebra and Functions
Use functions to model relationships between quantities.
8.AF.17: Analyze the relationship (increasing or decreasing, linear or non-linear) between two quantities represented in a graph.

The student will analyze the relationship (increasing or decreasing, linear or non-linear) between two quantities represented in a graph.

Tasks may or may not have a context.
Note: Function notation is not required in Grade 8.
1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given the graph of a relationship, identify key features of the relationship.

Given a situation in verbal form, interpret the information and identify its corresponding graph.

DSP: Data Analysis, Statistics, and Probability
Investigate patterns of association in bivariate data.
8.DSP.18: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities, describing patterns in terms of positive, negative, or no association, linear and non-linear association, clustering, and outliers.

The student will construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities, describing patterns in terms of positive, negative, or no association, linear and non-linear association, clustering, and outliers.

Assessment Limits / Content Constraints
DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

1,2 , or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a scatter plot for bivariate data, describe patterns of association using a variety of methods.

DSP: Data Analysis, Statistics, and Probability
Investigate patterns of association in bivariate data.
8.DSP.19: Given a scatter plot that suggests a linear association, informally draw a line to fit the data, and assess the model fit by judging the closeness of the data points to the line.

The student will informally draw a line to fit the data, and assess the model fit by judging the closeness of the data points to the line given a scatter plot that suggests a linear association.

Assessment Limits / Content Constraints
DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a scatter plot for bivariate data, suggest or describe or investigate a linear association between the two quantities.

Given a scatter plot for bivariate data, informally fit a straight line to the data and assess the closeness of the data to the points on the line.

Content Area
Cluster
Standard (2019 AL COS)
Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a situation of bivariate data dealing with a linear model, interpret key features of the linear model.

SUMMATIVE

Content Area
Cluster
Standard (2019 AL COS)
Evidence Statements

Assessment Limits / Content Constraints
DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)
DSP: Data Analysis, Statistics, and Probability
Investigate patterns of association in bivariate data.
8.DSP.21: Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects, using relative frequencies calculated for rows or columns to describe possible associations between the two variables.

The student will construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects, using relative frequencies calculated for rows or columns to describe possible associations between the two variables.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a two-way table, interpret the data in the table.
Given a partially completed two-way table, complete the table and draw conclusions.

GM: Geometry and Measurement

Understand congruence and similarity using physical models or technology.
8.GM.22a: Verify experimentally the properties of rigid motions (rotations, reflections, and translations): lines are taken to lines, and line segments are taken to line segments of the same length; angles are taken to angles of the same measure; and parallel lines are taken to parallel lines.
a. Given a pair of two-dimensional figures, determine if a series of rigid motions maps one figure onto the other, recognizing that if such a sequence exists the figures are congruent; describe the transformation sequence that verifies a congruence relationship.
The student will verify experimentally the properties of rigid motions (rotations, reflections, and translations): lines are taken to lines, and line segments are taken to line segments of the same length; angles are taken to angles of the same measure; and parallel lines are taken to parallel lines.
The student will determine if a series of rigid motions maps one figure onto the other given a pair of two-dimensional figures, recognizing that if such a sequence exists the figures are congruent.
The student will describe the transformation sequence that verifies a congruence relationship.

Assessment Limits / Content Constraints

DOK(s)
Calculator Item Type(s)
Context
Sample Stem Information (as applicable)

Tasks do not have a context.
Figures may be drawn in the coordinate plane but do not include the use of coordinates.

Tasks require students to make connections between congruence and transformations.

1, 2, or 3
NEUTRAL - a calculator may or may not be available for items
MC, MS, SA, TE
Not Allowable
Given a congruence transformation, identify the effect of that transformation on a line or line segment.
Given a congruence transformation, identify the effect of that transformation on an angle.
Given a congruence transformation, identify the effect of that transformation on a set of parallel lines.
Given two congruent figures on a coordinate grid, determine which single transformation or two transformations were used to obtain the resulting image.
Given a pair of congruent figures, determine a series of transformations that shows congruence between the two given figures.

GM: Geometry and Measurement

Understand congruence and similarity using physical models or technology.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

GM: Geometry and Measurement

Understand congruence and similarity using physical models or technology.
Standard
(2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints

DOK(s)
Calculator Item Type(s)
Context
Sample Stem Information (as applicable)
8.GM.24: Given a pair of two-dimensional figures, determine if a series of dilations and rigid motions maps one figure onto the other, recognizing that if such a sequence exists the figures are similar; describe the transformation sequence that exhibits the similarity between them.

The student will determine if a series of dilations and rigid motions maps one figure onto the other given a pair of two-dimensional figures, recognizing that if such a sequence exists the figures are similar.

The student will describe the transformation sequence that exhibits the similarity between the given pair of two-dimensional figures.

Tasks do not have a context.
Figures may be drawn in the coordinate plane but do not include the use of coordinates.

Tasks require students to make connections between similarity and transformations.

1, 2, or 3
NEUTRAL - a calculator may or may not be available for items
MC, MS, SA, TE
Not Allowable
Given two similar figures on a coordinate grid, determine which single transformation or two transformations were used to obtain the resulting image.

Given a pair of similar figures, determine a series of transformations that shows similarity between the two given figures.

GM: Geometry and Measurement

Analyze parallel lines cut by a transversal.
8.GM.25a: Analyze and apply properties of parallel lines cut by a transversal to determine missing angle measures.
a. Use informal arguments to establish that the sum of the interior angles of a triangle is 180 degrees.

Evidence Statements
The student will analyze and apply properties of parallel lines cut by a transversal to determine missing angle measures.

The student will use informal arguments to establish that the sum of the interior angles of a triangle is 180 degrees.

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem Information (as applicable)

1, 2, or 3
NEUTRAL - a calculator may or may not be available for items MC, MS, SA, TE
Allowable
Given a triangle or information about a triangle, determine facts about either interior or exterior angles.

Given a diagram created by or consisting of parallel lines and transversals, determine an angle relationship.

SUMMATIVE

Content Area
Cluster
Standard
(2019 AL COS)
Evidence Statements

Assessment Limits / Content Constraints
DOK(s)
Calculator Item Type(s)
Context
Sample Stem Information (as applicable)

GM: Geometry and Measurement
Understand and apply the Pythagorean Theorem.
8.GM.26: Informally justify the Pythagorean Theorem and its converse.

The student will informally justify the Pythagorean Theorem and its converse.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a right triangle, determine a true relationship of the right triangle.

Given a right triangle, explain a proof of the Pythagorean Theorem and its converse.

GM: Geometry and Measurement

Understand and apply the Pythagorean Theorem.
8.GM.27: Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.

The student will apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.

Assessment Limits / Content Constraints
DOK(s)
Calculator Item Type(s)
Context
Sample Stem Information (as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given two points on a coordinate grid, determine the distance between the two points.

GM: Geometry and Measurement

Understand and apply the Pythagorean Theorem.
8.GM.28: Apply the Pythagorean Theorem to determine unknown side lengths of right triangles, including real-world applications

The student will apply the Pythagorean Theorem to determine unknown side lengths of right triangles, including real-world applications.

Assessment Limits / Content Constraints DOK(s) Calculator Item Type(s) Context

Sample Stem Information (as applicable)

Tasks have "thin context" or no context.

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a verbal description of a right triangle, apply the Pythagorean Theorem to determine an unknown side length.

Given a right triangle, apply the Pythagorean Theorem to determine an unknown side length.

Given a real-world situation, apply the Pythagorean Theorem to solve a problem.

GM: Geometry and Measurement

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Standard
(2019 AL COS)

Evidence Statements
8.GM.29: Informally derive the formulas for the volume of cones and spheres by experimentally comparing the volumes of cones and spheres with the same radius and height to a cylinder with the same dimensions.

The student will informally derive the formulas for the volume of cones and spheres by experimentally comparing the volumes of cones and spheres with the same radius and height to a cylinder with the same dimensions.

Assessment Limits / Content Constraints

DOK(s)
Calculator
Item Type(s)
Context
Sample Stem
Information
(as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable

GM: Geometry and Measurement

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Standard
 (2019 AL COS)

Evidence Statements

Assessment Limits / Content Constraints
DOK(s)
Calculator Item Type(s)
Context
Sample Stem Information (as applicable)

1, 2, or 3
YES - a calculator will be available for items
MC, MS, SA, TE
Allowable
Given a three-dimensional figure (cone, cylinder, or sphere), find the volume of the figure.

Appendix A: Sample Items

Sample Items

Mathematics Grade 8

Alabama Comprehensive Assessment Program - Summative
SUMMATIVE

2023 Item Specifications

\square

Appendix A: Sample Items

Sample Item 1

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications

Appendix A: Sample Items

Sample Item 2

Enter a fraction that is equivaient to 0.7 .

Item Information		Answer Key(s) Description
Item Type	Short Answer	
Page Reference	10	7 (or equivalent fraction)
Alignment	8. NSO.1b	
Depth of Knowledge	2	
Answer Key	(see description)	

Alabama Comprehensive Assessment Program - Summative

SUMMATIVE

2023 Item Specifications
 2023 Item Specifications

$2(2)$

Appendix A: Sample Items

Sample Item 3

Select the unit interval on the number line that contains $\sqrt{31}$,

Item Information		Answer Key(s) Description
Item Type	Technology Enhanced	
Page Reference	11	The interval between 5 and 6 is selected.
Alignment	8. NSO. 2	
Depth of Knowledge	1	
Answer Key	(see description)	

Alabama Comprehensive Assessment Program - Summative

S U M M ATIVE

2023 Item Specifications

Appendix A: Sample Items

Sample Item 4

\left.| Item Information | | Option Annotations | |
| :--- | :--- | :--- | :---: |
| Item Type | Multiple Choice | A. The student finds the square root of | |
| 64 but does not realize the radical | | | |
| symbol needs to be removed. | | |$\right\}$| B. Correct |
| :--- | :--- |
| C. The student divides 64 by 4. |
| D. The student divides 64 by 2. |

Alabama Comprehensive Assessment Program - Summative

2023 Item Specifications

Appendix A: Sample Items

Sample Item 5

```
Which statemert about \sqrt{}{132}}\mathrm{ is correct?
(a) It is rational because 132 is a perfect squase.
(D) It is irational because }132\mathrm{ is a perfect square.
(0) It is rational because }132\mathrm{ is not a peffect square.
(d) It is irratonal because 132 is not a perfect square.
```

Item Information		Option Annotations
Item Type	Multiple Choice	A. The student thinks 132 is a perfect
square.		
Bage Reference	14	B. The student thinks perfect squares are irrational. C. The student thinks perfect squares are irrational.
Alignment	$8 . A F .4 \mathrm{~b}$	D. Correct
Depth of Knowledge	1	D
Answer Key	D	

Alabama Comprehensive Assessment Program - Summative

S U M M ATIVE
2023 Item Specifications

Appendix A: Sample Items

Sample Item 6

A company makes about 2.5×10^{7} tablets in a year. The company spends about $\$ 20$ to make each tablet. About how much money, in ocllars, does the company spend making tablets each year?

Item Information	
Item Type	Multiple Choice
Page Reference	16
Alignment	$8 . A F .6 a$
Depth of Knowledge	1
Answer Key	C

Option Annotations

A. The student uses 2×10^{1} for 20, adds 2 and 2.5 , and then adds the exponents of 7 and 1.
B. The student multiplies 2 and 2.5 and does not account for the change in the power of 10 .
C. Correct
D. The student adds 2.5 and 20 and keeps the same power of 10 .

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications
S U M M ATIVE

Appendix A: Sample Items

Sample Item 7

Item Information		Option Annotations
Item Type	Multiple Choice	A. The student compares PQ to QR in Iength. B. Correct C. The student thinks the horizontal and vertical distances must be equal.
Page Reference	20	D. The student compares the side lengths.
Alignment	$8 . A F .9 a$	
Depth of Knowledge	3	B
Answer Key		

S U M M ATIVE

$$
\begin{array}{r}
\text { Alabama Comprehensive Assessment Program - Summative } \\
2023 \text { Item Specifications }
\end{array}
$$

Appendix A: Sample Items

Sample Item 8

The point $(2, y)$ is on the same line as the points $(1,2)$ and $(7,-1)$. What is the value of y ?

Item Information		Answer Key(s) Description
Item Type	Short Answer	
Page Reference	21	3.5 (or equivalent)
Alignment	$8 . A F .9 b$	
Depth of Knowledge	3	
Answer Key	(see description)	

S U M M ATIVE

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications
 2023 Item Specifications

\square

Appendix A: Sample Items

Sample Item 9

Maya and Tecreil are reading the same book
 - The equation $y=-12 x+300$ can be used to calculate the number of pages Maya needs to read, y, to complete the book after x days of reading the book.
 - Terrell starts the book at the same time as Maya and reads 15 pages per day.
 How many days are there in between when Terrell finishes the book and when Maya frimhes the book?

Item Information		Answer Key(s) Description
Item Type	Short Answer	
Page Reference	24	5 (or equivalent)
Alignment	$8 . A F .10$	
Depth of Knowledge	3	
Answer Key	(see description)	

Alabama Comprehensive Assessment Program - Summative

SUMMATIVE

2023 Item Specifications
 2023 Item Specifications

\qquad

Appendix A: Sample Items

Sample Item 10

Item Information		Answer Key(s) Description
Item Type	Technology Enhanced	
-intercept of -1, that meets the given line		
at the point $(-3,-3)$.		

\qquad

Appendix A: Sample Items

Sample Item 11

Drag each function into the correct box.

S U M M ATIVE

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications
 2023 Item Specifications

Appendix A: Sample Items

Sample Item 12

On a recent trip to a locwl amusement park, Sade kept track of how much money she had remaining after paying to go on rides. Some of her data are shown in the table.

Number of Rides Paid For	Monty Remaining ($\$$)
0	50
5	40
10	30
15	20
20	10

What is the rate of change of Sedie's money remaining per ride paid for?

Item Information		Answer Key(s) Description
Item Type	Short Answer	
Page Reference	32	-2 (or equivalent)
Alignment	$8 . A F .16 a$	
Depth of Knowledge	1	2 (or equivalent)
Answer Key	(see description)	

S U M M ATIVE

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications

Appendix A: Sample Items

Sample Item 13

A scatterplot is shown.

Which statement best describes the relationship between x and y in the scatterplot?
(a) The relationship is positive and linear.

D The relationship is posifive and nonlinear,
(5) The relationship is negative and linear.
(d) The relationship is negative and nonlinear.

Item Information		Option Annotations
Item Type	Multiple Choice	A. The student does not recognize that this is a relationship with a negative slope.
Page Reference	34	B. The student does not recognize that this is a linear relationship with a negative slope.
Alignment	8. DSP.18	C. Correct D. The student does not recognize that this is a linear relationship.
Depth of Knowledge	1	C
Answer Key		

Alabama Comprehensive Assessment Program - Summative 2023 Item Specifications
S U M M ATIVE

Appendix A: Sample Items

Sample Item 14

Raul records the number of people who get on and off each bus at a bus stop. The scatterplot shows his data.

Raul draws a Ine to ft the data on his scatterplot. The y-infercept of his line is 1.1. What is the best estimate for the slope of his line?
()
${ }^{2} 0.5$0.4(d 2.5

Item Information		Option Annotations
Item Type	Multiple Choice	A. The student thinks the slope is negative. B. Correct C. The student uses the point $(2,2)$ and divides the coordinates. D. The student thinks the slope is the multiplicative inverse of 0.4 .
Page Reference	35	
Alignment	8.DSP. 19	
Depth of Knowledge	2	
Answer Key	B	

Alabama Comprehensive Assessment Program - Summative
SUMMATIVE

2023 Item Specifications

Appendix A: Sample Items

Sample Item 15

Item Information		Answer Key(s) Description
Item Type	Short Answer	
Page Reference	36	
Alignment	8.DSP.20a	76 (or equivalent)
Depth of Knowledge	2	
Answer Key	(see description)	

Appendix A: Sample Items

Sample Item 16

Courtney asked each of her classmates the following two questions:

- Do you com a dog?
- How many outdoor walks do you take each week?

Courtney displayed the results in a tatle.

	0-3 Walks	4-5 Walks	$6-7$ Walks	Total
Own a Dog	3	5	10	18
Do Not Own a Dog	11	8	3	22
Total	14	13	13	40

Based on the table, which statement about the association between owning a dog and the frequency of taking outdoor walks is true?
Students who own dogs tend to take outdoor walks with the same frequency as students who do not own dogs.
(b) Students who own dogs tend to take outdoor walks more frequently than students who do not own dogs.Students who own dogs tend to take outdoor walks less frequently than students who do not own dogs.
(d) There is no association between dog ownership and the frequency of taking outdoor walks.

Item Information		Option Annotations
Item Type	Multiple Choice	A. The student incorrectly interprets the table and the association between the variables.
Page Reference	37	B. Correct C. The student incorrectly interprets the association between the variables.
Alignment	8. DSP.21	D. The student incorrectly interprets the table and the association between the variables.
Depth of Knowledge	2	B
Answer Key		

Appendix A: Sample Items

Sample Item 17

Item Information		Option Annotations	
Item Type	Multiple Choice	A. Correct B. The student identifies a translation. C. The student identifies a reflection that is not over line m.	
Page Reference	38		
Alignment	$8 . G M .22$		
Depth of Knowledge	1		
Answer Key	A		

Alabama Comprehensive Assessment Program - Summative

S U M M ATIVE

2023 Item Specifications

Appendix A: Sample Items

Sample Item 18

Item Information		Option Annotations	
Item Type	Multiple Select	A. The student chooses a point that represents the two transformations. B. Correct C. Correct	
Page Reference	39	D. Correct E. The student translates point C to the right 2 units and up 4 units.	
Alignment	8. GM. 23	F. The student translates point A to the right 3 units and down 2 units.	
Depth of Knowledge	1	B, C, D	
Answer Key			

Appendix A: Sample Items

Sample Item 19

Item Information		Option Annotations	
Item Type	Multiple Choice	A. The student finds the translation for only vertex E to vertex C, instead of the entire triangle.	
Page Reference	40	B. The student finds the translation for only vertex D to vertex B, instead of the entire triangle.	
Alignment	$8 . G M .24$	C. Correct D. The student attempts to use dilation to map vertex E to vertex C only.	
Depth of Knowledge	2	C	
Answer Key			

Alabama Comprehensive Assessment Program - Summative

S U M M ATIVE

2023 Item Specifications

Appendix A: Sample Items

Sample Item 20

\square

Item Information		Option Annotations
Item Type	Multiple Choice	A. The student uses only one of the congruent triangles.
Page Reference	42	B. The student uses only one of the congruent triangles and does not divide the other triangle area by 2. C. Correct
Alignment	$8 . G M .26$	D. The student does not divide the area of the larger triangle by 2.
Depth of Knowledge	3	C
Answer Key		

