TEXTBOOK REVIEW FORM

MATHEMATICS

ALGEBRA I

Textbook/Series:

\qquad Edition \qquad Copyright \qquad Publisher \qquad

Reviewed by: \qquad

This form was based in part on:

Instructional Materials Analysis and Selection
Phase 3: Assessing Content Alignment to the Common Core Standards for Mathematics
A project of
The Charles A. Dana Center
At the University of Texas at Austin

Copyright permission obtained from The Charles A. Dana Center
Adapted for Alabama State Department of Education

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:

1. Make sense of problems and persevere in solving them.

These students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. These students consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to obtain the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solve complex problems and identify correspondences between different approaches.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE - GRADES K-12

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:
2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships. One is the ability to decontextualize, to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents. The second is the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Indicate the chapter(s), sections, and/or page(s) reviewed

Summary/Justification/Evidence

Overall Rating

Documenting Alignment to the
Standards for Mathematical Practice
Mathematically proficient students:

3. Construct viable arguments and critique the reasoning of others.

These students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. These students justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments; distinguish correct logic or reasoning from that which is flawed; and, if there is a flaw in an argument, explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until the middle or upper grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Overall Rating

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:

4. Model with mathematics.

These students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, students might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, students might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas and can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:

5. Use appropriate tools strategically.

Mathematically proficient students consider available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a Web site, and use these to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE - GRADES K-12

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:

6. Attend to precision.

These students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. Mathematically proficient students are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, and express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence
Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE - GRADES K-12

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. These students also can pause and reflect for an overview and shift perspective. They can observe the complexities of mathematics, such as some algebraic expressions as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE - GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:
8. Look for and express regularity in repeated reasoning.

They notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As students work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details and continually evaluate the reasonableness of their intermediate results.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

TEXTBOOK REVIEW FORM - MATHEMATICS - OVERALL

COLLEGE- AND CAREER-READY STANDARDS \& OTHER CRITERIA - GRADE K

Textbook/Series: \qquad

Edition \qquad Copyright \qquad Publisher \qquad

OVERALL RATING:	\square	Weak (1-2)	Important Mathematical Ideas: Summary/Justification/Evidence:	Weak (1-2) 	\square	Moderate (2-3)

Weak: This is the lowest rating a book can receive. In general, a book that was rated as "weak" scored mostly 1 s and 2 s on a 4 -point scale.
Moderate: This is the middle rating a book can receive. In general, a book that was rated as "moderate" scored mostly 2 s and 3 s on a 4 -point scale.
Strong: This is the highest rating a book can receive. In general, a book that was rated as "strong" scored mostly 3 s and 4 s on a 4-point scale.

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

NUMBER AND QUANTITY

The Real Number System

Extend the properties of exponents to rational exponents.
1. Explain how the definition of the meaning of rational exponents follows
from extending the properties of integer exponents to those values,
allowing for a notation for radicals in terms of rational exponents.
[N-RN1]
Example: We define $51 / 3$ to be the cube root of 5 because we want
$(51 / 3) 3=5(1 / 3) 3$ to hold, so $(51 / 3) 3$ must equal 5.

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

NUMBER AND QUANTITY

The Real Number System

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

NUMBER AND QUANTITY

The Real Number System

Use properties of rational and irrational numbers.
3. Explain why the sum or product of two rational numbers is rational; that
the sum of a rational number and an irrational number is irrational; and
that the product of a nonzero rational number and an irrational number is
irrational. [N-RN3]

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 NUMBER AND OUANTITY

Quantities*

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 NUMBER AND QUANTITY

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 NUMBER AND QUANTITY

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:	
ALCEBRA	
Seeing Structure in Expressions	
Interpret the structure of expressions. (Linear, exponential, quadratic.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
7. Interpret expressions that represent a quantity in terms of its context.* [A-SSE1 Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:	
ALCEBRA	
Seeing Structure in Expressions	
Interpret the structure of expressions. (Linear, exponential, quadratic.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
a. Interpret parts of an expression such as terms, factors, and coefficients. [A-SSE1a] Indicate the chapter(s), sections, and/or page(s) reviewed.	
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Seeing Structure in Expressions

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Seeing Structure in Expressions

Interpret the structure of expressions. (Linear, exponential, quadratic.)
8. Use the structure of an expression to identify ways to rewrite it. [A-
SSE2]
Example:See $\mathrm{x} 4-\mathrm{y} 4$ as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + $\mathrm{y} 2)$.

Indicate the chapter(s), sections, and/or page(s) reviewed.
Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any).

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Seeing Structure in Expressions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Seeing Structure in Expressions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Seeing Structure in Expressions

Write expressions in equivalent forms to solve problems. (Quadratic and exponential.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. [A-SSE3b] Indicate the chapter(s), sections, and/or page(s) reviewed.	
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:	
ALCEBRA	
Seeing Structure in Expressions	
Write expressions in equivalent forms to solve problems. (Quadratic and exponential.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
c. Determine a quadratic equation when given its graph or roots. Indicate the chapter(s), sections, and/or page(s) reviewed.	
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will

ALGEBRA

Seeing Structure in Expressions

Write expressions in equivalent forms to solve problems. (Quadratic and exponential.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
d. Use the properties of exponents to transform expressions for exponential functions. [A-SSE3c] Example: The expression 1.15 t can be rewritten as $(1.151 / 12) 12 \mathrm{t} \approx$ 1.01212 t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Arithmetic With Polynomials and Rational Expressions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Creating Equations*

Create equations that describe numbers or relationships. (Linear, quadratic, and exponential (integer inputs only); for Standard 13, linear only.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
11. Create equations and inequalities in one variable, and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [A-CED1] Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Creating Equations*

Create equations that describe numbers or relationships. (Linear, quadratic, and exponential (integer inputs only); for Standard 13, linear only.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
12. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [A-CED2] Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Creating Equations*

Create equations that describe numbers or relationships. (Linear, quadratic, and exponential (integer inputs only); for Standard 13, linear only.)

13. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. [A-CED3]
Example: Represent inequalities describing nutritional and cost constraints on combinations of different foods.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Creating Equations*

Create equations that describe numbers or relationships. (Linear, quadratic, and exponential (integer inputs only); for Standard 13, linear only.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
14. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. [A-CED4] Example: Rearrange Ohm's law V $=\mathrm{IR}$ to highlight resistance R . Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Solve equations and inequalities in one variable. (Linear inequalities; literal that are linear in the variables being solved for; quadratics with real solutions.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
Indicate the chapter(s), sections, and/or page(s) reviewed.	
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Solve equations and inequalities in one variable. (Linear inequalities; literal that are linear in the variables being solved for; quadratics with real solutions.)
a. Use the method of completing the square to transform any quadratic
equation in x into an equation of the form $(\mathrm{x}-\mathrm{p}) 2=\mathrm{q}$ that has the same
solutions. Derive the quadratic formula from this form. [A-REI 4 a]

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Solve equations and inequalities in one variable. (Linear inequalities; literal that are linear in the variables being solved for; quadratics with real solutions.)
 b. Solve quadratic equations by inspection (e.g., for $\mathrm{x} 2=49$), taking square roots, completing the square and the quadratic formula, and factoring as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions, and write them as a \pm bi for real numbers a and b . [A-REI4b]

Indicate the chapter(s), sections, and/or page(s) reviewed

Summary and documentation of how the domain, cluster, and standard are met Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Solve systems of equations. (Linear-linear and linear-quadratic.)
18. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. [A-REI5]

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Solve systems of equations. (Linear-linear and linear-quadratic.)
20. Solve a simple system consisting of a linear equation and a quadratic
equation in two variables algebraically and graphically. [A-REI7]
Example:Find the points of intersection between the line $\mathrm{y}=-3 \mathrm{x}$ and the circle $\mathrm{x} 2+\mathrm{y} 2=3$.

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Represent and solve equations and inequalities graphically. (Linear and exponential; learn as general principle.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
21. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [A-REI10]	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Represent and solve equations and inequalities graphically. (Linear and exponential; learn as general principle.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
22. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $\mathrm{f}(\mathrm{x})$ and/or $\mathrm{g}(\mathrm{x})$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* [A-REI11]	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

ALGEBRA

Reasoning With Equations and Inequalities

Represent and solve equations and inequalities graphically. (Linear and exponential; learn as general principle.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
23. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes. [A-REI12]	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNCTIONS

Interpreting Functions

Understand the concept of a function and use function notation. (Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
24. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $\mathrm{y}=\mathrm{f}(\mathrm{x})$. [F-IF1] Indicate the chapter(s), sections, and/or page(s) reviewed.	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNCTIONS

Interpreting Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNCTIONS

Interpreting Functions

Understand the concept of a function and use function notation. (Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
26. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. [F-IF3] Example: The Fibonacci sequence is defined recursively by $\mathrm{f}(0)=\mathrm{f}(1)=1, \mathrm{f}(\mathrm{n}+1)=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{n}-1)$ for $\mathrm{n} \geq 1$. Indicate the chapter(s), sections, and/or page(s) reviewed.	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

Interpret functions that arise in applications in terms of the context. (Linear, exponential, and quadratic.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
27. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [F-IF4]	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

Interpret functions that arise in applications in terms of the context. (Linear, exponential, and quadratic.)
28. Relate the domain of a function to its graph and, where applicable, to the
quantitative relationship it describes.* [F-IF5]
Example:

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary and documentation of how the domain, cluster, and standard are met Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

Interpret functions that arise in applications in terms of the context. (Linear, exponential, and quadratic.)
29. Calculate and interpret the average rate of change of a function (presented
symbolically or as a table) over a specified interval. Estimate the rate of
change from a graph.* [F-IF6]

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Interpreting Functions

Analyze functions using different representations. (Linear, exponential, quadratic, absolute value, step, piecewise-defined.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. [F-IF8a]	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNCTIONS

Interpreting Functions

Analyze functions using different representations. (Linear, exponential, quadratic, absolute value, step, piecewise-defined.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
b. Use the properties of exponents to interpret expressions for exponential functions. [F-IF8b] Example: Identify percent rate of change in functions such as $y=$ $(1.02) \mathrm{t}, \mathrm{y}=(0.97) \mathrm{t}, \mathrm{y}=(1.01) 12 \mathrm{t}$, and $\mathrm{y}=(1.2) \mathrm{t} / 10$, and classify them as representing exponential growth and decay.	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNETIONS

Interpreting Functions

Analyze functions using different representations. (Linear, exponential, quadratic, absolute value, step, piecewise-defined.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
32. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [F-IF9] Example: Given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNETIONS

Building Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNETIONS

Building Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Building Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Building Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNETIONS

Building Functions

Build new functions from existing functions. (Linear, exponential, quadratic, and absolute value; for standard 36a, linear only.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
35. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. [F-BF3]	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNETIONS

Building Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Building Functions

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNGTIONS

Linear, Quadratic, and Exponential Models*

Construct and compare linear, quadratic, and exponential models and solve problems.	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
37. Distinguish between situations that can be modeled with linear functions and with exponential functions. [F-LE1] Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Linear, Quadratic, and Exponential Models*

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNGTIONS

Linear, Quadratic, and Exponential Models*

Construct and compare linear, quadratic, and exponential models and solve problems.	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. [F-LE1b] Indicate the chapter(s), sections, and/or page(s) reviewed.	
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:
 FUNCTIONS

Linear, Quadratic, and Exponential Models*

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNGTIONS

Linear, Quadratic, and Exponential Models*

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNGTIONS

Linear, Quadratic, and Exponential Models*

Construct and compare linear, quadratic, and exponential models and solve problems.	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
39. Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. [F-LE3] Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

FUNCTIONS

Linear, Quadratic, and Exponential Models*

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

Summarize, represent, and interpret data on a single count or measurement variable.	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
41. Represent data with plots on the real number line (dot plots, histograms, and box plots). [S-ID1] Indicate the chapter(s), sections, and/or page(s) reviewed.	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

Summarize, represent, and interpret data on two categorical and quantitative variables. (Linear focus, discuss general principle.)
44. Summarize categorical data for two categories in two-way frequency
tables. Interpret relative frequencies in the context of the data (including
joint, marginal, and conditional relative frequencies). Recognize possible
associations and trends in the data. [S-ID5]

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

Summarize, represent, and interpret data on two categorical and quantitative variables. (Linear focus, discuss general principle.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
45. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [S-ID6] Indicate the chapter(s), sections, and/or page(s) reviewed.	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

Summarize, represent, and interpret data on two categorical and quantitative variables. (Linear focus, discuss general principle.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. [S-ID6a]	
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data.

Summarize, represent, and interpret data on two categorical and quantitative variables. (Linear focus, discuss general principle.)	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
c. Fit a linear function for a scatter plot that suggests a linear association. [S-ID6c] Indicate the chapter(s), sections, and/or page(s) reviewed.	Important Mathematical Ideas Skills and Procedures Mathematical Relationships Summary/Justification/Evidence
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data

Interpret linear models.	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.
46. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [S-ID7]	Important Mathematical Ideas
	Skills and Procedures
	Mathematical Relationships
	Summary/Justification/Evidence
Indicate the chapter(s), sections, and/or page(s) reviewed.	
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):
	Overall Rating
	$\begin{array}{llll}1 & 2 & 3\end{array}$

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data

TEXTBOOK REVIEW FORM - MATHEMATICS

 COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I
Students will:

STATISTICS AND PROBABIIITY

Interpreting Categorical and Quantitative Data

Interpret linear models.

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Conditional Probability and the Rules of Probability

Understand independence and conditional probability and use them to interpret data. (Link to data from simulations or experiments.)
49. Describe events as subsets of a sample space (the set of outcomes), using
characteristics (or categories) of the outcomes, or as unions, intersections,
or complements of other events ("or," "and," "not"). [S-CP1]

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Mathematical Relationships

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS

COLLEGE- AND CAREER-READY STANDARDS - ALGEBRA I

Students will:

STATISTICS AND PROBABIIITY

Conditional Probability and the Rules of Probability

Understand independence and conditional probability and use them to interpret data. (Link to data from simulations or experiments.)
50. Understand that two events A and B are independent if the probability of
A and B occurring together is the product of their probabilities, and use
this characterization to determine if they are independent. [S-CP2]

Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.

Important Mathematical Ideas

Skills and Procedures

Summary/Justification/Evidence

Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITERIA AND INDICATORS - GRADES K-12

Documenting Alignment to

Additional Criteria and Indicators

Content

Criteria and Indicators	Summary and documentation of how the additional criteria and indicators are met. Cite examples from the materials.
1. Content is designed for students of varied abilities and understanding.	Overall Rating
2. Content is free of bias and/or controversial information.	Overall Rating
3. Content includes strategies for vocabulary instruction and graphic organizers.	Overall Rating
4. Content includes assignments that encourage integration of other content areas to support a math concept/skill.	Overall Rating
Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence:

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITERIA AND INDICATORS - GRADES K-12

Documenting Alignment to

Additional Criteria and Indicators

Technology

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITERIA AND INDICATORS - GRADES K-12

Documenting Alignment to
Additional Criteria and Indicators
Assessment

Criteria and Indicators	Summary and documentation of how the additional criteria and indicators are met. Cite examples from the materials.
1. Some assessments are designed to measure student understanding above the knowledge level. 2. Guidance is provided to teacher regarding how assessment information can be used to inform instruction. 3. Rubrics are provided for grading some assignments. 4. Some opportunities are provided for students to check their own understanding.	Overall Rating Overall Rating Overall Rating Overall Rating
Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence:

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITERIA AND INDICATORS - GRADES K-12

Documenting Alignment to

Additional Criteria and Indicators

Assessment (Continued)

Criteria and Indicators	Summary and documentation of how the additional criteria and indicators are met. Cite examples from the materials.
5. Assessment activities examine the extent to which students can apply information to situations that require reasoning and creative thinking. 6. Multiple means of assessments are used, informal as well as formal. 7. Conceptual understanding and procedural knowledge are frequently assessed through tasks that ask students to apply information about a given concept in novel situations.	Overall Rating Overall Rating Overall Rating
Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence:

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITERIA AND INDICATORS - GRADES K-12

Documenting Alignment to

Additional Criteria and Indicators

Instruction

