AHSAA Homeschool Student Eligibility Exams Algebra II		
Standard Reference	Standard Text	Percentage of Test Items
N	Number and Quantity	29\%
$\mathrm{N}-\mathrm{CN}$	The Complex Number System	
	Perform arithmetic operations with complex numbers.	
N-CN. 1	Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.	
N-CN. 2	Use the relation $\mathrm{i}^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	
N-CN. 3	Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	
	Use complex numbers in polynomial identities and equations.	
N-CN. 4	Solve quadratic equations with real coefficients that have complex solutions.	
N-CN. 5	Extend polynomial identities to the complex numbers.	
N-CN. 6	Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	
N-VM	Vector and Matrix Quantities	
	Perform operations on matrices and use matrices in applications.	
N-VM. 7	Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	
N-VM. 8	Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.	
N-VM. 9	Add, subtract, and multiply matrices of appropriate dimensions.	
N-VM. 10	Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	
N-VM. 11	Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.	
A	Algebra	31\%
A-SSE	Seeing Structure in Expressions	
	Interpret the structure of expressions	
A-SSE. 12	Interpret expressions that represent a quantity in terms of its context.	
$\begin{aligned} & \text { A- } \\ & \text { SSE.12.a } \end{aligned}$	Interpret parts of an expression, such as terms, factors, and coefficients.	
$\begin{aligned} & \text { A- } \\ & \text { SSE.12.b } \end{aligned}$	Interpret complicated expressions by viewing one or more of their parts as a single entity.	
A-SSE. 13	Use the structure of an expression to identify ways to rewrite it.	

Standard Reference	Standard Text	Percentage of Test Items
	Write expressions in equivalent forms to solve problems	
A-SSE. 14	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.	
A-APR	Arithmetic with Polynomials and Rational Expressions	
	Perform arithmetic operations on polynomials	
A-APR. 15	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	
	Understand the relationship between zeros and factors of polynomials	
A-APR. 16	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	
A-APR. 17	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	
	Use polynomial identities to solve problems	
A-APR. 18	Prove polynomial identities and use them to describe numerical relationships.	
	Rewrite rational expressions	
A-APR. 19	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $\mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x}) / \mathrm{b}(\mathrm{x})$, where $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}), \mathrm{q}(\mathrm{x})$, and $\mathrm{r}(\mathrm{x})$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	
A-CED	Creating Equations	
	Create equations that describe numbers or relationships	
A-CED. 20	Create equations and inequalities in one variable and use them to solve problems.	
A-CED. 21	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	
A-CED. 22	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	
A-CED. 23	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	

Standard Reference	Standard Text	Percentage of Test Items
A-REI	Reasoning with Equations and Inequalities	
	Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 24	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	
	Solve equations and inequalities in one variable	
A-REI. 25	Recognize when the quadratic formula gives complex solutions, and write them as $\mathrm{a} \pm \mathrm{bi}$ for real numbers a and b .	
	Solve systems of equations	
A-REI. 26	Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).	
	Represent and solve equations and inequalities graphically	
A-REI. 27	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	
F	Functions	29\%
F-CS	Conic Sections	
	Understand the graphs and equations of conic sections.	
F-CS. 28	Create graphs of conic sections, including parabolas, hyperbolas, ellipses, circles, and degenerate conics, from second-degree equations.	
F-CS.28.a	Formulate equations of conic sections from their determining characteristics.	
F-IF	Interpreting Functions	
	Interpret functions that arise in applications in terms of the context	
F-IF. 29	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	
	Analyze functions using different representations	
F-IF. 30	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
F-IF.30.a	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	
F-IF.30.b	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.	
F-IF.30.c	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	

$\begin{array}{l}\text { Standard } \\ \text { Reference }\end{array}$	\quad Standard Text	$\begin{array}{c}\text { Percentage } \\ \text { of Test } \\ \text { Items }\end{array}$
F-IF.31	$\begin{array}{l}\text { Write a function defined by an expression in different but equivalent forms } \\ \text { to reveal and explain different properties of the function. }\end{array}$	
F-IF.32	$\begin{array}{l}\text { Compare properties of two functions each represented in a different way } \\ \text { (algebraically, graphically, numerically in tables, or by verbal descriptions). }\end{array}$	
F-BF	Building Functions	Build a function that models a relationship between two quantities

Standard Reference	Standard Text	Percentage of Test Items
S-CP.41	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two- way table as a sample space to decide if events are independent and to approximate conditional probabilities.	
S-CP.42	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.	
	Use the rules of probability to compute probabilities of compound events in a uniform probability model	
S-CP.43	Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.	
S-CP.44	Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model.	
S-CP.45	Apply the general Multiplication Rule in a uniform probability model, P(A and B) $=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.	
S-CP.46	Use permutations and combinations to compute probabilities of compound events and solve problems.	

