AHSAA Homeschool Student Eligibility Exams Mathematics - Grade 8		
Standard Reference	Standard Text	Percentage of Test Items
	The Number System, Expressions and Equations	40\%
8.NS	The Number System	
	Know that there are numbers that are not rational, and approximate them by rational numbers.	
8.NS. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. [8NS1]	
8.NS. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., pi^{2}). [8-NS2] Example: By truncating the decimal expansion of (the square root of) 2, show that (the square root of) 2 is between 1 and 2, then between 1.4 and 1.5 , and explain how to continue on to get better approximations.	
8.EE	Expressions and Equations	
	Work with radicals and integer exponents.	
8.EE. 3	Know and apply the properties of integer exponents to generate equivalent numerical expressions. [8-EE1] Example: $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=1 / 27$.	
8.EE. 4	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that the square root of 2 is irrational. [8-EE2]	
8.EE. 5	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. [8-EE3] Example: Estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.	
8.EE. 6	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. [8-EE4]	

Standard Reference	Standard Text	Percentage of Test Items
	Understand the connections between proportional relationships, lines, and linear equations.	
	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8-EE5] Example: Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	
8.EE.7	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b. [8-EE6]	
8.EE.8	Analyze and solve linear equations and pairs of simultaneous linear equations.	
8.EE.9	Solve linear equations in one variable. [8-EE7]	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers). [8-EE7a]

Standard Reference	Standard Text	Percentage of Test Items
$8 . \mathrm{F}$	Functions	31\%
	Define, evaluate, and compare functions.	
8.F. 11	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.) [8-F1]	
8.F. 12	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [8-F2] Example: Given a linear function represented by a table of values and linear function represented by an algebraic expression, determine which function has the greater rate of change.	
8.F. 13	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. [8-F3] Example: The function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$, and $(3,9)$, which are not on a straight line.	
	Use functions to model relationships between quantities.	
8.F. 14	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. [8-F4]	
8.F. 15	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8-F5]	
	Geometry, Statistics and Probability	29\%
8.G	Geometry	
	Understand congruence and similarity using physical models, transparencies, or geometry software.	
8.G.16	Verify experimentally the properties of rotations, reflections, and translations: [8-G1]	
8.G.16.a	Lines are taken to lines, and line segments to line segments of the same length. [8-G1a]	
8.G.16.b	Angles are taken to angles of the same measure. [8-G1b]	
8.G.16.c	Parallel lines are taken to parallel lines. [8-G1c]	
8.G. 17	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. [8-G2]	

Standard Reference	Standard Text	Percentage of Test Items
8.G.18	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. [8-G3]	
	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. [8- G4]	
8.G.19	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. [8-G5] Example: Arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give argument in terms of transversals why this is so.	
8.G.20		
Understand and apply the Pythagorean Theorem.		
8.G.21	Explain a proof of the Pythagorean Theorem and its converse. [8-G6]	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. [8-G7]

Standard Reference	Standard Text	Percentage of Test Items
$8 . S P .27$	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8-SP3] Example: In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} /$ hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	
	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8-SP4] Example: Collect data from students in your class on whether or not they have a curfew on school nights, and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	
8.SP.28		

