TEXTBOOK REVIEW FORM

MATHEMATICS

PRECALCULUS
Textbook/Series: \qquad

Edition: \qquad Copyright: \qquad Publisher: \qquad

Reviewed by: \qquad

This form was based in part on:

A project of
The Charles A. Dana Center
At the University of Texas at Austin
Copyright permission obtained from The Charles A. Dana Center
Adapted for Alabama State Department of Education

Textbook/Series: \qquad
Edition: \qquad Copyright: \qquad Publisher: \qquad

OVERALL RATING:	Weak (1-2)		
	Moderate (2-3) Strong (3-4)	Comments:	
1. Make sense of problems and preserve in solving them. Summary/Justification/Evidence:	Weak (1-2) Moderate (2-3) Strong (3-4)	2. Reason abstractly and quantitatively. Summary/Justification/Evidence	Weak (1-2)
3. Construct viable arguments and critique the reasoning of others. Summary/Justification/Evidence:	Weak (1-2)	Moderate (2-3)	Strong (3-4)

Weak: This is the lowest rating a book can receive. In general, a book that was rated as "weak" scored mostly 1 s and 2 s on a 4 -point scale.
Moderate: This is the middle rating a book can receive. In general, a book that was rated as "moderate" scored mostly 2 s and 3 s on a 4 -point scale.
Strong: This is the highest rating a book can receive. In general, a book that was rated as "strong" scored mostly 3 s and 4 s on a 4-point scale.
The Charles A. Dana Center
2
Adapted for the Alabama Depatment of Education

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

1. Make sense of problems and persevere in solving them.

These students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. These students consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to obtain the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solve complex problems and identify correspondences between different approaches.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships. One is the ability to decontextualize, to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents. The second is the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Portions of the mathematical practice that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the
 Standards for Mathematical Practice

Mathematically proficient students:

3. Construct viable arguments and critique the reasoning of others.

These students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. These students justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments; distinguish correct logic or reasoning from that which is flawed; and, if there is a flaw in an argument, explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until the middle or upper grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

4. Model with mathematics.

These students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, students might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, students might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas and can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Portions of the mathematical practice that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

5. Use appropriate tools strategically.

Mathematically proficient students consider available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a Web site, and use these to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Portions of the mathematical practice that are missing or not well developed in the instructional materials (if any):

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

6. Attend to precision.

These students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. Mathematically proficient students are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, and express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Portions of the mathematical practice that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. These students also can pause and reflect for an overview and shift perspective. They can observe the complexities of mathematics, such as some algebraic expressions as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Portions of the mathematical practice that are missing or not well developed in the instructional materials (if any):

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - STANDARDS FOR MATHEMATICAL PRACTICE GRADES K-12

Documenting Alignment to the

Standards for Mathematical Practice

Mathematically proficient students:

8. Look for and express regularity in repeated reasoning.

They notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As students work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details and continually evaluate the reasonableness of their intermediate results.

Indicate the chapter(s), sections, and/or page(s) reviewed.

Summary/Justification/Evidence

Overall Rating

TEXTBOOK REVIEW FORM - MATHEMATICS - OVERALL

 MATHEMATICAL STANDARDS \& OTHER CRITERIA - GEOMETRYTextbook/Series: \qquad
Edition: \qquad Copyright: \qquad Publisher: \qquad

OVERALL RATING:	Weak (1-2)	Important Mathematical Ideas: Summary/Justification/Evidence:	Weak (1-2)
	Moderate (2-3)		Moderate (2-3)
	Strong (3-4)		Strong (3-4)
Skills and Procedures: Summary/Justification/Evidence:	Weak (1-2)	Mathematical Relationships: Summary/Justification/Evidence	Weak (1-2)
	Moderate (2-3)		Moderate (2-3)
	Strong (3-4)		Strong (3-4)
Content: Summary/Justification/Evidence:	Weak (1-2)	Instruction: Summary/Justification/Evidence:	Weak (1-2)
	Moderate (2-3)		Moderate (2-3)
	Strong (3-4)		Strong (3-4)
Assessment: Summary/Justification/Evidence:	Weak (1-2)	Technology: Summary/Justification/Evidence:	Weak (1-2)
	Moderate (2-3)		Moderate (2-3)
	Strong (3-4)		Strong (3-4)

Weak: This is the lowest rating a book can receive. In general, a book that was rated as "weak" scored mostly 1 s and 2 s on a 4 -point scale.
Moderate: This is the middle rating a book can receive. In general, a book that was rated as "moderate" scored mostly 2 s and 3 s on a 4-point scale.
Strong: This is the highest rating a book can receive. In general, a book that was rated as "strong" scored mostly $3 s$ and $4 s$ on a 4-point scale.
The Charles A. Dana Center

Number and Quantity

The Complex Number System	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will: 2. Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	Important Mathematical Ideas	1	2	3	4
	Skills and Procedures	1	2	3	4
Indicate the chapter(s), sections, and/or page(s) reviewed.	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

The Complex Number System	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
3. Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

The Complex Number System	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
5. Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

The Complex Number System	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
6. Analyze possible zeros for a polynomial function over the complex numbers by applying the Fundamental Theorem of Algebra, using a graph of the function, or factoring with algebraic identities.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Limits	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
7. Determine numerically, algebraically, and graphically the limits of functions at specific values and at infinity. a. Apply limits of functions at specific values and at infinity in problems involving convergence and divergence.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Vector and Matrix Quantities	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.						
Students will:	Important Mathematical Ideas	1	2	3	4		
8. Explain that vector quantities have both magnitude and direction. Represent vector quantities by directed line segments, and use	Skills and Procedures	1	2	3	4		
Examples: $v,\|v\|,\\|v\\|, v$	Mathematical Relationships	1	2	3	4		
	Summary/Justification/Evide						
Indicate the chapter(s), sections, and/or page(s) reviewed.							
	Portions of the domain, clust developed in the instructional	standa ials (if	at ar	ing			
	Overall Rating						
		1	2	3	4		

Vector and Matrix Quantities	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
10. Solve problems involving velocity and other quantities that can be represented by vectors.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, clust developed in the instructiona	standa ials (if	at ar	ing	
	Overall Rating				
		1	2	3	4

Vector and Matrix Quantities	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
11. Find the scalar (dot) product of two vectors as the sum of the products of corresponding components and explain its relationship to the cosine of the angle formed by two vectors.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Vector and Matrix Quantities	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
14. Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Algebra

Arithmetic with Polynomials and Rational Expressions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
16. Derive and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, clust developed in the instructiona	stand ials (if	at		
	Overall Rating				
		1	2	3	4

Arithmetic with Polynomials and Rational Expressions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
17. Know and apply the Binomial Theorem for the expansion of $(x+y)$ n in powers of x and y for a positive integer, n, where x and y are any numbers.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, clust developed in the instructional	standa ials (if	at	ing	
	Overall Rating				
		1	2	3	4

Reasoning with Equations and Inequalities	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
21. Solve simple rational equations in one variable, and give examples showing how extraneous solutions may arise.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, clust developed in the instructiona	standa ials (if	at ar	ing	
	Overall Rating				
		1	2	3	4

Functions

Interpreting Functions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
25. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Extend from polynomial, exponential, logarithmic, and radical to rational and all trigonometric functions. a. Find the difference quotient $f(x+\Delta x)-f \mathrm{x}$ of a function and	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
Δx	Summary/Justification/Evidence				
Indicate the chapter(s), sections, and/or page(s) reviewed.	Portions of the domain, cluster, and standard that are missing or not wel developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Interpreting Functions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
26. Graph functions expressed symbolically and show key features of the graph, by hand and using technology. Use the equation of functions to identify key features in order to generate a graph. a. Graph rational functions, identifying zeros and asymptotes	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
behavior. b. Graph trigonometric functions and their inverses, showing	Summary/Justification/Evidence				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not wel developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Building Functions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
27. Compose functions. Extend to polynomial, trigonometric, radical, and rational functions. Example: If $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.	Skills and Procedures Mathematical Relationships Summary/Justification/Evid	1	2 2	3	4 4
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

Building Functions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
29. Use the inverse relationship between exponents and logarithms to solve problems involving logarithms and exponents. Extend from logarithms with base 2 and 10 to a base of e.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster developed in the instructional	stand ials (if	hat		
	Overall Rating				
		1	2	3	4

Trigonometric Functions	Summary and documentation of how the domain, cluster, and standard are met. Cite examples from the materials.				
Students will:	Important Mathematical Ideas	1	2	3	4
35. Demonstrate that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	Skills and Procedures	1	2	3	4
	Mathematical Relationships	1	2	3	4
	Summary/Justification/Evide				
Indicate the chapter(s), sections, and/or page(s) reviewed.					
	Portions of the domain, cluster, and standard that are missing or not well developed in the instructional materials (if any):				
	Overall Rating				
		1	2	3	4

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITIERIA AND INDICATORS

Documenting Alignment to

Additional Criteria and Indicators

Content

Criteria and Indicators	Summary and documentation of how the additional criteria and indicators are met. Cite examples from the materials.				
1. Content is designed for students of varied abilities and understanding.	Overall Rating	1	2	3	4
2. Content is free of bias and/or controversial information.	Overall Rating	1	2	3	4
3. Content includes strategies for vocabulary instruction and graphic organizers.	Overall Rating	1	2	3	4
4. Content includes assignments that encourage integration of other content areas to support a math concept/skill.	Overall Rating	1	2	3	4
Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justificati				

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITIERIA AND INDICATORS

Documenting Alignment to

Additional Criteria and Indicators

Technology

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITIERIA AND INDICATORS

Documenting Alignment to
 Additional Criteria and Indicators

Assessment

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITIERIA AND INDICATORS

Documenting Alignment to

Additional Criteria and Indicators

Assessment (Continued)

Criteria and Indicators	Summary and documentation of how the additional criteria and indicators are met. Cite examples from the materials.				
5. Assessment activities examine the extent to which students can apply information to situations that require reasoning and creative thinking.	Overall Rating	1	2	3	4
6. Multiple means of assessments are used, informal as well as formal.	Overall Rating	1	2	3	4
7. Conceptual understanding and procedural knowledge are frequently assessed through tasks that ask students to apply information about a given concept in novel situations.	Overall Rating	1	2	3	4
Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justificatio				

TEXTBOOK REVIEW FORM - MATHEMATICS - ADDITIONAL CRITIERIA AND INDICATORS

Documenting Alignment to

Additional Criteria and Indicators

Instruction

Criteria and Indicators	Summary and documentation of how the additional criteria and indicators are met. Cite examples from the materials.				
1. Teacher guide provides suggestions for how to demonstrate/model skills or use of knowledge.	Overall Rating	1	2	3	4
2. Teacher guide offers alternative instructional strategies for advanced learners, struggling learners, ELL and Sp. Ed.	Overall Rating	1	2	3	4
3. Teacher guide suggests multiple opportunities for students to demonstrate understanding.	Overall Rating	1	2	3	4
4. Teacher guide provides opportunities for guided practice and scaffolded support.	Overall Rating	1	2	3	4
5. Teacher guide includes suggestions to diagnose student errors, explanations of how these errors may be corrected, and how to further develop student ideas.	Overall Rating	1	2	3	4
Indicate the chapter(s), sections, and/or page(s) reviewed.	Summary/Justification/Evidence:				

