
1

CIEP Submission Form

 Computer Science (6-12)
(for Educator Preparation Chapter adopted 8-12-2021)

Institution Name:
Date Submitted:

Program Level: Select one of the options below.

☐Class B
☐Alternative Class A

Submitting for: Choose one of the options below.

☐Initial review of a proposed program
☐Continuing review of a currently approved program
☐Resubmission to address unmet standards and/or conditions

Overview of Each Required Section:

I. Background Information: Provide background information about the program (checklist;
numbers of admissions, completers, and recommendations for certification). The “n”s
reported here are used to determine if “n”s reported in data tables are consistent.

II. Key Assessments, Data, and Data Analysis: Provide an overview of the key assessment in
the Section II chart. Key Assessments are typically summative assessments of candidate
proficiencies. For each key assessment, included the completed coversheet; assessment
instrument, instructions, or test specification information; rubric or scoring guide; and data
table(s). Program faculty preparing submissions should use the Rubric for Key Assessments.

III. Alignment of Standards to Curriculum and Key Assessments: Provide an overview of how
the program ensures each indicator is adequately addressed in curriculum and key
assessments so reviewers know where to look to for evidence. Reviewers use the course
descriptions and assessment documents, not the chart, to determine whether each
indicator is adequately addressed.

IV. Summary of Field Experiences Prior to Internship: Provide an overview of how the
program requires candidates to demonstrate developing proficiencies in field experiences
prior to internship. Copies of instructions or assignments must be submitted. Assessment
information is not required but may be submitted. Field experiences should have clear
purposes and reflect increasing expectations. Program faculty preparing submissions
should use the Rubric for Field Experiences Prior to Internship.

2

SECTION I Background Information

1. Include the proposed checklist as a separate document.

2. Data on Unconditional Admissions, Program Completers, and Certificates Issued
Programs should report at least three years of data. If the “n” over three years is less than 10, the
program should report five years of data.

Academic Year
September 1 to
August 31

Number of
Unconditional
Admissions

Number of Program
Completers1

Number
Recommended for
Alabama
Certification

1 Use the Title II definition for program completers.

3

SECTION II Key Assessments, Data, and Data Analysis
1. Assessments #1-#5 are required. No more than eight key assessments may be submitted.
2. Complete a coversheet for each key assessment and attach it to the instrument or

instructions, or test specifications; rubric or scoring guide; and data tables(s). Submit these
documents in a Key Assessments folder on the flash drive and a section of the binder.
Key Assessment

Title
Name of Key
Assessment2

Type of Key
Assessment3

When Required by
Program4

1 a

1 b

State Certification
Tests:5

Praxis Computer

Science

Praxis PLT

State Certification
Tests

2 Content
Knowledge6

3 Planning
Instruction7

4 Internship

5 Effect on Student
Learning8

69
7
8

2 Identify assessment by title used in the program.
3 Types of assessment include but are not limited to essay, case study, project, comprehensive exam, reflection,
state certification test, and portfolio.
4 Assessments might be required at the time of admission to the program, admission to internship, during a
required course, or at program completion.
5 Test data must include the percentage of candidates who passed the tests for the last three years. Total scores
and appropriate sub-test data must be reported.
6 Examples of appropriate content knowledge assessments include grade analyses, comprehensive examinations,
portfolio tasks, and culminating performances.
7 Examples of appropriate assessments for planning instruction include developing lesson or unit plans that
address the breadth and depth of the teaching field, individualized education plans, needs assessments, or
intervention plans.
8 Examples of appropriate assessments for effect on student learning include those based on samples of student
work, portfolio tasks, case studies, and appropriate follow-up studies.
9 Examples of optional assessments addressing program standards include but are not limited to evaluations of
field experiences, case studies, specific portfolio artifacts, complete portfolios, and follow-up studies.

4

SECTION III Alignment of Standards to Curriculum and Key Assessments
Identify the curriculum components and key assessments listed in Section II that address the
standard and indicators. Only courses that directly address indicators should be listed. In most
cases, an indicator will be addressed by more than one key assessment. Cross-references to the
standards and indicators should be inserted into the assessment instruments, scoring guides,
and data tables.

Standard 1 Knowledge.
Prior to program completion, prospective teachers of computer science shall demonstrate knowledge
sufficient to teach content related to:

Indicators

Curriculum Components—
Courses or Other
Requirements10

(Include course prefix,
number, and name.)

Key
Assessment(s)
(Identify by key

assessment
number[s] in
Section II.)

1.1 Impacts of Computing.
1.1.1
Impact of, obstacles to, and effects of computing.

1.1.2
Issues regarding intellectual property, ethics (e.g.,
concerns related to artificial intelligence and
machine learning capabilities that may affect
society), privacy, and security in computing.

1.2 Algorithms and Computational Thinking.
1.2.1
Abstraction; pattern recognition in data samples
and computational processes; problem
decomposition; and number base conversion.

1.2.2
Algorithm analysis, searching and sorting
algorithms, recursive algorithms, randomization,
and algorithm expression (e.g., pseudocode and
flowcharts).

1.3 Programming.
1.3.1
Programming control structures, standard
operators (e.g., arithmetic, relational and logical),
variables, correctness, extensibility, modifiability,
and reusability.

5

1.3.2
Procedures, function, and methods; event-driven
programs; usability; data structures (e.g., stacks,
queues, lists); debugging; documenting and
reviewing code; libraries and application
programming interfaces (APIs), integrated
development environments (IDEs); and
programming language paradigms, including
object-oriented concepts.

1.4 Data.
1.4.1
Digitalization of information; data encryption and
decryption; data compression, error detection and
correction; and computational tools.

1.4.2
Simulation, modeling, and manipulation of data.

1.5 Computing Systems and Networks.
1.5.1
Hardware and software for designing systems,
identifying and fixing problems, and
troubleshooting issues), software life cycle,
operating systems, computing systems, virtual
machines, communication between devices, and
cloud computing.

1.5.2
Networks, including protocols, encryption, and
security issues and the Web.

6

Standard 2 Abilities.
Prior to program completion, prospective teachers of computer science shall demonstrate ability to
teach students to:

Indicators

Curriculum Components—
Courses or Other

Requirements
(Include course prefix,
number, and name.)

Key
Assessment(s)
(Identify by key

assessment
number[s] in
Section II.)

2.1 Computing Systems.
2.1.1
Recommend improvements to the design of
computing devices, based on an analysis of how
users interact with software and hardware devices.

2.1.2
Design projects that combine hardware and
software components to collect, process, and
output data.

2.1.3
Systematically identify and fix problems with
computing devices and their components.

2.1.4
Explain how abstractions hide the underlying
implementation details of computing systems
embedded in everyday objects.

2.1.5
Compare levels of abstraction and interactions
between application software, system software,
and hardware layers.

2.1.6
Develop guidelines that convey systematic trouble-
shooting strategies that others can use to identify
and fix errors.

2.1.7
Categorize the roles of operating system software.

2.1.8
Illustrate ways computing systems implement
logic, input, and output through hardware
components.

7

2. Networks and the Internet.
2.2.1
Model the role of protocols in transmitting data
across networks and the Internet. (6-8)

2.2.2
Explain how physical and digital security measures
protect electronic information, including public key
cryptography.

2.2.3
Apply multiple methods of encryption to model
the secure transmission of information.

2.2.4
Evaluate the scalability and reliability of networks,
by describing the relationship between routers,
switches, servers, topology, and addressing.

2.2.5
Give examples to illustrate how sensitive data can
be affected by malware and other attacks.

2.2.6
Recommend security measures to address various
scenarios based on factors such as efficiency,
feasibility, and ethical impacts.

2.2.7
Compare various security measures, considering
tradeoffs between the usability and security of a
computing system.

2.2.8
Explain tradeoffs when selecting and implementing
cybersecurity recommendations.

2.2.9
Describe the issues that impact network
functionality (e.g., bandwidth, load, delay,
topology).

2.2.10
Compare ways software developers protect
devices and information from unauthorized access,
considering different classifications of intrusion
prevention systems and how each identifies
malicious activity, logs information about the
activity, reports it, and attempts to block or stop it.

8

3. Data and Analysis.
2.3.1
Represent data using multiple encoding schemes.

2.3.2
Collect data using computational tools and
transform the data to make the data more useful
and reliable.

2.3.3
Refine computational models based on the data
they have generated.

2.3.4
Translate between different bit representations of
real-world phenomena, such as characters,
numbers, and images.

2.3.5
Evaluate the tradeoffs in how data elements are
organized and where data are stored.

2.3.6
Create interactive data visualizations using
software tools to help others better understand
real-world phenomena.

2.3.7
Create computational models that represent the
relationships among different elements of data
collected from a phenomena or process.

2.3.8
Use data analysis tools and techniques to identify
patterns in data representing complex systems.

2.3.9
Select data collection tools and techniques to
generate data sets that support a claim or
communicate information.

2.3.10
Evaluate the ability of models and simulations to
test and support the refinement of hypotheses.

4. Algorithms and Programming.
2.4.1
Use flowcharts and/or pseudocode to address
complex problems as algorithms.

2.4.2
Create clearly named variables that represent
different data types and perform operations (e.g.,

9

arithmetic, relational, and logical operations) on
their values.
2.4.3
Design and iteratively develop programs that
combine control structures, including nested loops
and compound conditionals.

2.4.4
Decompose problems and subproblems into parts
(functions) to facilitate the design,
implementation, and review of programs.

2.4.5
Create procedures with parameters to organize
code ad make it easier to reuse.

2.4.6
Seek and incorporate feedback from team
members and users to refine a solution that meets
user needs.

2.4.7
Incorporate existing code, media, and libraries into
original programs, and give attribution.

2.4.8
Systematically test and refine programs using a
range of test cases.

2.4.9
Distribute tasks and maintain a project timeline
when collaboratively developing computational
artifacts.

2.4.10
Document programs in order to make them easier
to follow, test, and debug.

2.4.11
Create prototypes that use algorithms to solve
computational problems by leveraging prior
student knowledge and personal interests.

2.4.12
Use lists or arrays to simplify solutions,
generalizing computational problems instead of
repeatedly using simple variables.

2.4.13
Justify the selection of specific control structures
when tradeoffs involve implementation,
readability, and program performance, and explain
the benefits and drawbacks of choices made.

10

2.4.14
Design and iteratively develop computational
artifacts for practical intent, personal expression,
or to address a societal issue by using events to
initiate instructions.

2.4.15
Decompose problems into smaller components
through systematic analysis, using constructs such
as procedures, modules, and objects.

2.4.16
Create artifacts by using procedures within a
program, combinations of data and procedures, or
independent but interrelated programs.

2.4.17
Systematically design and develop programs for
broad audiences by incorporating feedback from
users.

2.4.18
Evaluate licenses that limit or restrict use of
computational artifacts when using resources such
as libraries.

2.4.19
Evaluate and refine computational artifacts to
make them more usable and accessible.

2.4.20
Design and develop computational artifacts
working in team roles using collaborative tools and
pair programming techniques.

2.4.21
Document design decisions using text, graphics,
presentations, and/or demonstrations in the
development of complex programs.

2.4.22
Demonstrate ways a given algorithm applies to
problems across disciplines.

2.4.23
Describe how artificial intelligence drives many
software and physical systems.

2.4.24
Implement an artificial intelligence algorithm to
play a game against a human opponent or solve a
problem.

11

2.4.25
Use and adapt classic algorithms (e.g., shortest
path, sorting, and searching) to solve
computational problems.

2.4.26
Evaluate algorithms in terms of their efficiency,
correctness, and clarity.

2.4.27
Compare and contrast fundamental data
structures and their uses.

2.4.28
Illustrate the flow of execution of a recursive
algorithm.

2.4.29 Construct solutions to problems using
student-created components, such as procedures,
nodules and objects.

2.4.30
Analyze a large-scale computational problem and
identify generalizable patterns that can be applied
to a solution.

2.4.31
Demonstrate code reuse by creating programming
solutions using libraries and APIs.

2.4.32
Plan and develop programs for broad audiences
using a software life-cycle process.

2.4.33
Explain security issues that might lead to
compromised computer programs.

2.4.34
Develop programs for multiple computing
platforms.

2.4.35
Use version control systems, integrated
development environments (IDEs), and
collaborative tools and practices (code
documentation) in a group software project.

2.4.36
Develop and use a series of test cases to verify that
a program performs according to its design
specifications.

12

2.4.37
Modify an existing program to add additional
functionality and discuss intended and unintended
implications (e.g., breaking other functionality).

2.4.38
Evaluate key qualities of a program through a
process such as a code review.

2.4.39
Modify an existing program to add additional
functionality and discuss intended and unintended
implications (e.g., breaking other functionality).

2.4.40
Evaluate key qualities of a program through a
process such as a code review.

2.4.41
Compare multiple programming languages and
discuss how their features make them suitable for
solving different types of problems.

5. Impacts of Computing.
2.5.1
Compare tradeoffs associated with computing
technologies that affect people’s everyday
activities and career options.

2.5.2
Discuss issues of bias; accessibility for all users,
including those with special needs; and usability in
the design of existing technologies.

2.5.3
Collaborate with contributors through strategies
such as crowdsourcing or surveys when creating a
computational artifact.

2.5.4
Describe tradeoffs between allowing information
to be public and keeping information private and
secure, recognizing that nothing posted online is
private.

2.5.5
Evaluate the ways computing impacts personal,
ethical, social, economic, and cultural practices.

2.5.6
Test and refine computational artifacts to reduce
bias and equity deficits.

13

2.5.7
Demonstrate ways a given algorithm applies to
problems across disciplines.

2.5.8
Use tools and methods for collaboration on a
project to increase connectivity of people in
different cultures and career fields.

2.5.9
Explain the beneficial and harmful effects that
intellectual property laws can have on innovation.

2.5.10
Explain the privacy concerns related to the
collection and generation of data through
automated processes that may not be evident to
users.

2.5.11
Evaluate the social and economic implications of
privacy in the context of safety, law, and ethics.

2.5.12
Evaluate computational artifacts to maximize their
beneficial effects and minimize harmful effects on
society.

2.5.13
Evaluate the impact of equity, access, and
influence on the distribution of computing
resources in the global society.

2.5.14
Predict how computational innovations that have
revolutionized aspects of our culture might evolve.

2.5.15
Debate laws and regulations that impact the
development and use of software.

2.5.16
Consider the impact of professional societies (e.g.,
Association for Computing Machinery, Institute of
Electrical and Electronics Engineers, Association of
Information.

14

Standard 3 Pedagogy.
Prior to program completion, prospective computer science teachers demonstrate ability to:

Indicators

Curriculum Components—
Courses or Other

Requirements
(Include course prefix,
number, and name.)

Key
Assessment(s)
(Identify by key

assessment
number[s] in
Section II.)

3.1
Encourage students from underrepresented
groups to take computer science courses.

3.2
Make students aware of trends in the computer
science job market (e.g., emerging skills sets, entry
requirements, career paths, and salaries).

3.3
Use a variety of instructional strategies, including
digital and physical (offline or unplugged)
environments.

3.4
Adapt instruction to student interests and abilities.

3.5
Incorporate collaboration into instruction.

15

Standard 4 Professionalism.
Prior to program completion, prospective computer science teachers demonstrate ability to:

Indicators

Curriculum Components—
Courses or Other

Requirements
(Include course prefix,
number, and name.)

Key
Assessment(s)
(Identify by key

assessment
number[s] in
Section II.)

4.1
Articulate why all students are capable of learning
computer science.

4.2
Develop computer science curricula.

4.3
Stay current with research on computer science
education, including pedagogy and assessment.

4.4
Learn collaboratively with other computer science
teachers.

16

SECTION IV Summary of Field Experiences Prior to Internship

1. List all courses (or other curriculum requirements) that have a required field experience,

in the order that the courses are typically taken. Include the course prefix, number, and
title.

Course
Prefix

Course
Number

Course Title

2. Are field experiences always done in this order? ☐Yes ☐No

If no, provide a brief explanation.

3. Briefly explain how placements are made to ensure that candidates are placed in diverse
schools.

4. For each field experience, complete a field experience coversheet and attach it to the

instructions or assignments for the field experience. Submit these in a Field Experience
folder on the flash drive and a section in the binder.

	Class B: Off
	Alternative Class A: Off
	Initial review of a proposed program: Off
	Continuing review of a currently approved program: Off
	Resubmission to address unmet standards andor conditions: Off
	Academic Year September 1 to August 31Row1:
	Number of Unconditional AdmissionsRow1:
	Number of Program Completers1Row1:
	Number Recommended for Alabama CertificationRow1:
	Academic Year September 1 to August 31Row2:
	Number of Unconditional AdmissionsRow2:
	Number of Program Completers1Row2:
	Number Recommended for Alabama CertificationRow2:
	Academic Year September 1 to August 31Row3:
	Number of Unconditional AdmissionsRow3:
	Number of Program Completers1Row3:
	Number Recommended for Alabama CertificationRow3:
	Academic Year September 1 to August 31Row4:
	Number of Unconditional AdmissionsRow4:
	Number of Program Completers1Row4:
	Number Recommended for Alabama CertificationRow4:
	Academic Year September 1 to August 31Row5:
	Number of Unconditional AdmissionsRow5:
	Number of Program Completers1Row5:
	Number Recommended for Alabama CertificationRow5:
	Name of Key Assessment2State Certification Tests5 Praxis Computer Science Praxis PLT:
	When Required by Program4State Certification Tests:
	When Required by Program4State Certification Tests_2:
	2:
	Name of Key Assessment2Content Knowledge6:
	State Certification TestsContent Knowledge6:
	When Required by Program4Content Knowledge6:
	3:
	Name of Key Assessment2Planning Instruction7:
	State Certification TestsPlanning Instruction7:
	When Required by Program4Planning Instruction7:
	4:
	Name of Key Assessment2Internship:
	State Certification TestsInternship:
	When Required by Program4Internship:
	5:
	Name of Key Assessment2Effect on Student Learning8:
	State Certification TestsEffect on Student Learning8:
	When Required by Program4Effect on Student Learning8:
	Effect on Student Learning869:
	Name of Key Assessment269:
	State Certification Tests69:
	When Required by Program469:
	Effect on Student Learning87:
	Name of Key Assessment27:
	State Certification Tests7:
	When Required by Program47:
	Effect on Student Learning88:
	Name of Key Assessment28:
	State Certification Tests8:
	When Required by Program48:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name11 Impacts of Computing:
	Key Assessments Identify by key assessment numbers in Section II11 Impacts of Computing:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name111 Impact of obstacles to and effects of computing:
	Key Assessments Identify by key assessment numbers in Section II111 Impact of obstacles to and effects of computing:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name112 Issues regarding intellectual property ethics eg concerns related to artificial intelligence and machine learning capabilities that may affect society privacy and security in computing:
	Key Assessments Identify by key assessment numbers in Section II112 Issues regarding intellectual property ethics eg concerns related to artificial intelligence and machine learning capabilities that may affect society privacy and security in computing:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name12 Algorithms and Computational Thinking:
	Key Assessments Identify by key assessment numbers in Section II12 Algorithms and Computational Thinking:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name121 Abstraction pattern recognition in data samples and computational processes problem decomposition and number base conversion:
	Key Assessments Identify by key assessment numbers in Section II121 Abstraction pattern recognition in data samples and computational processes problem decomposition and number base conversion:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name122 Algorithm analysis searching and sorting algorithms recursive algorithms randomization and algorithm expression eg pseudocode and flowcharts:
	Key Assessments Identify by key assessment numbers in Section II122 Algorithm analysis searching and sorting algorithms recursive algorithms randomization and algorithm expression eg pseudocode and flowcharts:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name13 Programming:
	Key Assessments Identify by key assessment numbers in Section II13 Programming:
	Curriculum Components Courses or Other Requirements10 Include course prefix number and name131 Programming control structures standard operators eg arithmetic relational and logical variables correctness extensibility modifiability and reusability:
	Key Assessments Identify by key assessment numbers in Section II131 Programming control structures standard operators eg arithmetic relational and logical variables correctness extensibility modifiability and reusability:
	132 Procedures function and methods eventdriven programs usability data structures eg stacks queues lists debugging documenting and reviewing code libraries and application programming interfaces APIs integrated development environments IDEs and programming language paradigms including objectoriented concepts:
	14 Data:
	141 Digitalization of information data encryption and decryption data compression error detection and correction and computational tools:
	142 Simulation modeling and manipulation of data:
	15 Computing Systems and Networks:
	151 Hardware and software for designing systems identifying and fixing problems and troubleshooting issues software life cycle operating systems computing systems virtual machines communication between devices and cloud computing:
	152 Networks including protocols encryption and security issues and the Web:
	Curriculum Components Courses or Other Requirements Include course prefix number and name211 Recommend improvements to the design of computing devices based on an analysis of how users interact with software and hardware devices:
	Key Assessments Identify by key assessment numbers in Section II211 Recommend improvements to the design of computing devices based on an analysis of how users interact with software and hardware devices:
	Curriculum Components Courses or Other Requirements Include course prefix number and name212 Design projects that combine hardware and software components to collect process and output data:
	Key Assessments Identify by key assessment numbers in Section II212 Design projects that combine hardware and software components to collect process and output data:
	Curriculum Components Courses or Other Requirements Include course prefix number and name213 Systematically identify and fix problems with computing devices and their components:
	Key Assessments Identify by key assessment numbers in Section II213 Systematically identify and fix problems with computing devices and their components:
	Curriculum Components Courses or Other Requirements Include course prefix number and name214 Explain how abstractions hide the underlying implementation details of computing systems embedded in everyday objects:
	Key Assessments Identify by key assessment numbers in Section II214 Explain how abstractions hide the underlying implementation details of computing systems embedded in everyday objects:
	Curriculum Components Courses or Other Requirements Include course prefix number and name215 Compare levels of abstraction and interactions between application software system software and hardware layers:
	Key Assessments Identify by key assessment numbers in Section II215 Compare levels of abstraction and interactions between application software system software and hardware layers:
	Curriculum Components Courses or Other Requirements Include course prefix number and name216 Develop guidelines that convey systematic trouble shooting strategies that others can use to identify and fix errors:
	Key Assessments Identify by key assessment numbers in Section II216 Develop guidelines that convey systematic trouble shooting strategies that others can use to identify and fix errors:
	Curriculum Components Courses or Other Requirements Include course prefix number and name217 Categorize the roles of operating system software:
	Key Assessments Identify by key assessment numbers in Section II217 Categorize the roles of operating system software:
	Curriculum Components Courses or Other Requirements Include course prefix number and name218 Illustrate ways computing systems implement logic input and output through hardware components:
	Key Assessments Identify by key assessment numbers in Section II218 Illustrate ways computing systems implement logic input and output through hardware components:
	221 Model the role of protocols in transmitting data across networks and the Internet 68:
	222 Explain how physical and digital security measures protect electronic information including public key cryptography:
	223 Apply multiple methods of encryption to model the secure transmission of information:
	224 Evaluate the scalability and reliability of networks by describing the relationship between routers switches servers topology and addressing:
	225 Give examples to illustrate how sensitive data can be affected by malware and other attacks:
	226 Recommend security measures to address various scenarios based on factors such as efficiency feasibility and ethical impacts:
	227 Compare various security measures considering tradeoffs between the usability and security of a computing system:
	228 Explain tradeoffs when selecting and implementing cybersecurity recommendations:
	229 Describe the issues that impact network functionality eg bandwidth load delay topology:
	2210 Compare ways software developers protect devices and information from unauthorized access considering different classifications of intrusion prevention systems and how each identifies malicious activity logs information about the activity reports it and attempts to block or stop it:
	231 Represent data using multiple encoding schemes:
	232 Collect data using computational tools and transform the data to make the data more useful and reliable:
	233 Refine computational models based on the data they have generated:
	234 Translate between different bit representations of realworld phenomena such as characters numbers and images:
	235 Evaluate the tradeoffs in how data elements are organized and where data are stored:
	236 Create interactive data visualizations using software tools to help others better understand realworld phenomena:
	237 Create computational models that represent the relationships among different elements of data collected from a phenomena or process:
	238 Use data analysis tools and techniques to identify patterns in data representing complex systems:
	239 Select data collection tools and techniques to generate data sets that support a claim or communicate information:
	2310 Evaluate the ability of models and simulations to test and support the refinement of hypotheses:
	241 Use flowcharts andor pseudocode to address complex problems as algorithms:
	242 Create clearly named variables that represent different data types and perform operations eg:
	arithmetic relational and logical operations on their values:
	243 Design and iteratively develop programs that combine control structures including nested loops and compound conditionals:
	244 Decompose problems and subproblems into parts functions to facilitate the design implementation and review of programs:
	245 Create procedures with parameters to organize code ad make it easier to reuse:
	246 Seek and incorporate feedback from team members and users to refine a solution that meets user needs:
	247 Incorporate existing code media and libraries into original programs and give attribution:
	248 Systematically test and refine programs using a range of test cases:
	249 Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts:
	2410 Document programs in order to make them easier to follow test and debug:
	2411 Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests:
	2412 Use lists or arrays to simplify solutions generalizing computational problems instead of repeatedly using simple variables:
	2413 Justify the selection of specific control structures when tradeoffs involve implementation readability and program performance and explain the benefits and drawbacks of choices made:
	2414 Design and iteratively develop computational artifacts for practical intent personal expression or to address a societal issue by using events to initiate instructions:
	2415 Decompose problems into smaller components through systematic analysis using constructs such as procedures modules and objects:
	2416 Create artifacts by using procedures within a program combinations of data and procedures or independent but interrelated programs:
	2417 Systematically design and develop programs for broad audiences by incorporating feedback from users:
	2418 Evaluate licenses that limit or restrict use of computational artifacts when using resources such as libraries:
	2419 Evaluate and refine computational artifacts to make them more usable and accessible:
	2420 Design and develop computational artifacts working in team roles using collaborative tools and pair programming techniques:
	2421 Document design decisions using text graphics presentations andor demonstrations in the development of complex programs:
	2422 Demonstrate ways a given algorithm applies to problems across disciplines:
	2423 Describe how artificial intelligence drives many software and physical systems:
	2424 Implement an artificial intelligence algorithm to play a game against a human opponent or solve a problem:
	2425 Use and adapt classic algorithms eg shortest path sorting and searching to solve computational problems:
	2426 Evaluate algorithms in terms of their efficiency correctness and clarity:
	2427 Compare and contrast fundamental data structures and their uses:
	2428 Illustrate the flow of execution of a recursive algorithm:
	2429 Construct solutions to problems using studentcreated components such as procedures nodules and objects:
	2430 Analyze a largescale computational problem and identify generalizable patterns that can be applied to a solution:
	2431 Demonstrate code reuse by creating programming solutions using libraries and APIs:
	2432 Plan and develop programs for broad audiences using a software lifecycle process:
	2433 Explain security issues that might lead to compromised computer programs:
	2434 Develop programs for multiple computing platforms:
	2435 Use version control systems integrated development environments IDEs and collaborative tools and practices code documentation in a group software project:
	2436 Develop and use a series of test cases to verify that a program performs according to its design specifications:
	2437 Modify an existing program to add additional functionality and discuss intended and unintended implications eg breaking other functionality:
	2438 Evaluate key qualities of a program through a process such as a code review:
	2439 Modify an existing program to add additional functionality and discuss intended and unintended implications eg breaking other functionality:
	2440 Evaluate key qualities of a program through a process such as a code review:
	2441 Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems:
	5 Impacts of Computing:
	251 Compare tradeoffs associated with computing technologies that affect peoples everyday activities and career options:
	252 Discuss issues of bias accessibility for all users including those with special needs and usability in the design of existing technologies:
	253 Collaborate with contributors through strategies such as crowdsourcing or surveys when creating a computational artifact:
	254 Describe tradeoffs between allowing information to be public and keeping information private and secure recognizing that nothing posted online is private:
	255 Evaluate the ways computing impacts personal ethical social economic and cultural practices:
	256 Test and refine computational artifacts to reduce bias and equity deficits:
	257 Demonstrate ways a given algorithm applies to problems across disciplines:
	258 Use tools and methods for collaboration on a project to increase connectivity of people in different cultures and career fields:
	259 Explain the beneficial and harmful effects that intellectual property laws can have on innovation:
	2510 Explain the privacy concerns related to the collection and generation of data through automated processes that may not be evident to users:
	2511 Evaluate the social and economic implications of privacy in the context of safety law and ethics:
	2512 Evaluate computational artifacts to maximize their beneficial effects and minimize harmful effects on society:
	2513 Evaluate the impact of equity access and influence on the distribution of computing resources in the global society:
	2514 Predict how computational innovations that have revolutionized aspects of our culture might evolve:
	2515 Debate laws and regulations that impact the development and use of software:
	2516 Consider the impact of professional societies eg Association for Computing Machinery Institute of Electrical and Electronics Engineers Association of Information:
	Curriculum Components Courses or Other Requirements Include course prefix number and name31 Encourage students from underrepresented groups to take computer science courses:
	Key Assessments Identify by key assessment numbers in Section II31 Encourage students from underrepresented groups to take computer science courses:
	Curriculum Components Courses or Other Requirements Include course prefix number and name32 Make students aware of trends in the computer science job market eg emerging skills sets entry requirements career paths and salaries:
	Key Assessments Identify by key assessment numbers in Section II32 Make students aware of trends in the computer science job market eg emerging skills sets entry requirements career paths and salaries:
	Curriculum Components Courses or Other Requirements Include course prefix number and name33 Use a variety of instructional strategies including digital and physical offline or unplugged environments:
	Key Assessments Identify by key assessment numbers in Section II33 Use a variety of instructional strategies including digital and physical offline or unplugged environments:
	Curriculum Components Courses or Other Requirements Include course prefix number and name34 Adapt instruction to student interests and abilities:
	Key Assessments Identify by key assessment numbers in Section II34 Adapt instruction to student interests and abilities:
	Curriculum Components Courses or Other Requirements Include course prefix number and name35 Incorporate collaboration into instruction:
	Key Assessments Identify by key assessment numbers in Section II35 Incorporate collaboration into instruction:
	Curriculum Components Courses or Other Requirements Include course prefix number and name41 Articulate why all students are capable of learning computer science:
	Key Assessments Identify by key assessment numbers in Section II41 Articulate why all students are capable of learning computer science:
	Curriculum Components Courses or Other Requirements Include course prefix number and name42 Develop computer science curricula:
	Key Assessments Identify by key assessment numbers in Section II42 Develop computer science curricula:
	Curriculum Components Courses or Other Requirements Include course prefix number and name43 Stay current with research on computer science education including pedagogy and assessment:
	Key Assessments Identify by key assessment numbers in Section II43 Stay current with research on computer science education including pedagogy and assessment:
	Curriculum Components Courses or Other Requirements Include course prefix number and name44 Learn collaboratively with other computer science teachers:
	Key Assessments Identify by key assessment numbers in Section II44 Learn collaboratively with other computer science teachers:
	Course PrefixRow1:
	Course NumberRow1:
	Course TitleRow1:
	Course PrefixRow2:
	Course NumberRow2:
	Course TitleRow2:
	Course PrefixRow3:
	Course NumberRow3:
	Course TitleRow3:
	Course PrefixRow4:
	Course NumberRow4:
	Course TitleRow4:
	Course PrefixRow5:
	Course NumberRow5:
	Course TitleRow5:
	Course PrefixRow6:
	Course NumberRow6:
	Course TitleRow6:
	Course PrefixRow7:
	Course NumberRow7:
	Course TitleRow7:
	Course PrefixRow8:
	Course NumberRow8:
	Course TitleRow8:
	Course PrefixRow9:
	Course NumberRow9:
	Course TitleRow9:
	Course PrefixRow10:
	Course NumberRow10:
	Course TitleRow10:
	2 Are field experiences always done in this order: Off
	Text17:
	Text18:
	Text19:
	Text20:
	Text21:
	Text22:
	Text23:
	Text24:
	Text25:
	Text26:
	Text27:
	Text28:
	Text29:
	Text30:
	Text31:
	Text32:
	Text33:
	Text34:
	Text35:
	Text36:
	Text37:
	Text38:
	Text39:
	Text40:
	Text41:
	Text42:
	Text43:
	Text44:

