CIEP Submission Form

Computer Science (6-12)

(for Educator Preparation Chapter adopted 8-12-2021)

Institution Name: Date Submitted:

Program Level: Select one of the options below.

□Class B □Alternative Class A

Submitting for: *Choose one of the options below.*

Initial review of a proposed program
Continuing review of a currently approved program
Resubmission to address unmet standards and/or conditions

Overview of Each Required Section:

- I. Background Information: Provide background information about the program (checklist; numbers of admissions, completers, and recommendations for certification). The "n"s reported here are used to determine if "n"s reported in data tables are consistent.
- **II. Key Assessments, Data, and Data Analysis:** Provide an overview of the key assessment in the Section II chart. Key Assessments are typically summative assessments of candidate proficiencies. For each key assessment, included the completed coversheet; assessment instrument, instructions, or test specification information; rubric or scoring guide; and data table(s). Program faculty preparing submissions should use the Rubric for Key Assessments.
- III. Alignment of Standards to Curriculum and Key Assessments: Provide an overview of how the program ensures each indicator is adequately addressed in curriculum and key assessments so reviewers know where to look to for evidence. Reviewers use the course descriptions and assessment documents, not the chart, to determine whether each indicator is adequately addressed.
- IV. Summary of Field Experiences Prior to Internship: Provide an overview of how the program requires candidates to demonstrate developing proficiencies in field experiences prior to internship. Copies of instructions or assignments must be submitted. Assessment information is not required but may be submitted. Field experiences should have clear purposes and reflect increasing expectations. Program faculty preparing submissions should use the Rubric for Field Experiences Prior to Internship.

SECTION I Background Information

1. Include the proposed checklist as a separate document.

2. Data on Unconditional Admissions, Program Completers, and Certificates Issued

Programs should report at least three years of data. If the "n" over three years is less than 10, the program should report five years of data.

Academic Year September 1 to August 31	Number of Unconditional Admissions	Number of Program Completers ¹	Number Recommended for Alabama Certification

¹ Use the Title II definition for program completers.

SECTION II Key Assessments, Data, and Data Analysis

- 1. Assessments #1-#5 are required. No more than eight key assessments may be submitted.
- 2. Complete a coversheet for each key assessment and attach it to the instrument or instructions, or test specifications; rubric or scoring guide; and data tables(s). Submit these documents in a Key Assessments folder on the flash drive and a section of the binder.

#	Key Assessment Title	Name of Key Assessment ²	Type of Key Assessment ³	When Required by Program ⁴
1 a	State Certification <u>Tests</u> : ⁵ Praxis Computer		State Certification Tests	
1 b	Science Praxis PLT			
2	Contont			
2	Knowledge ⁶			
3	Planning Instruction ⁷			
4	Internship			
5	Effect on Student Learning ⁸			
6 ⁹				
7				
8				

² Identify assessment by title used in the program.

³ Types of assessment include but are not limited to essay, case study, project, comprehensive exam, reflection, state certification test, and portfolio.

⁴ Assessments might be required at the time of admission to the program, admission to internship, during a required course, or at program completion.

⁵ Test data must include the percentage of candidates who passed the tests for the last three years. Total scores and appropriate sub-test data must be reported.

⁶ Examples of appropriate content knowledge assessments include grade analyses, comprehensive examinations, portfolio tasks, and culminating performances.

⁷ Examples of appropriate assessments for planning instruction include developing lesson or unit plans that address the breadth and depth of the teaching field, individualized education plans, needs assessments, or intervention plans.

⁸ Examples of appropriate assessments for effect on student learning include those based on samples of student work, portfolio tasks, case studies, and appropriate follow-up studies.

⁹ Examples of optional assessments addressing program standards include but are not limited to evaluations of field experiences, case studies, specific portfolio artifacts, complete portfolios, and follow-up studies.

SECTION III Alignment of Standards to Curriculum and Key Assessments

Identify the curriculum components and key assessments listed in Section II that address the standard and indicators. Only courses that directly address indicators should be listed. In most cases, an indicator will be addressed by more than one key assessment. Cross-references to the standards and indicators should be inserted into the assessment instruments, scoring guides, and data tables.

Standard 1 Knowledge.		
Prior to program completion, prospective teachers o	f computer science shall demor	strate knowledge
sufficient to teach content related to:		
	Curriculum Components—	Кеу
Indicators	Courses or Other	Assessment(s)

Indicators	Courses or Other Requirements ¹⁰ (Include course prefix, number, and name.)	Assessment(s) (Identify by key assessment number[s] in Section II.)
1.1 Impacts of Computing.		
1.1.1		
Impact of, obstacles to, and effects of computing.		
1.1.2		
Issues regarding intellectual property, ethics (e.g.,		
concerns related to artificial intelligence and		
machine learning capabilities that may affect		
society), privacy, and security in computing.		
1.2 Algorithms and Computational Thinking.		
1.2.1		
Abstraction; pattern recognition in data samples		
and computational processes; problem		
decomposition; and number base conversion.		
1.2.2		
Algorithm analysis, searching and sorting		
algorithms, recursive algorithms, randomization,		
and algorithm expression (e.g., pseudocode and		
flowcharts).		
1.3 Programming.		
1.3.1		
Programming control structures, standard		
operators (e.g., arithmetic, relational and logical),		
variables, correctness, extensibility, modifiability,		
and reusability.		

1.3.2	
Procedures, function, and methods; event-driven	
programs; usability; data structures (e.g., stacks,	
queues, lists); debugging; documenting and	
reviewing code; libraries and application	
programming interfaces (APIs), integrated	
development environments (IDEs); and	
programming language paradigms, including	
object-oriented concepts.	
1.4 Data.	
1.4.1	
Digitalization of information; data encryption and	
decryption; data compression, error detection and	
correction; and computational tools.	
1.4.2	
Simulation, modeling, and manipulation of data.	
1.5 Computing Systems and Networks.	
1.5.1	
Hardware and software for designing systems,	
identifying and fixing problems, and	
troubleshooting issues), software life cycle,	
operating systems, computing systems, virtual	
machines, communication between devices, and	
cloud computing.	
1.5.2	
Networks, including protocols, encryption, and	
security issues and the Web.	

Standard 2 Abilities.

Prior to program completion, prospective teachers of computer science shall demonstrate ability to teach students to:

	Curriculum Components—	Кеу
Indicators	Courses or Other	Assessment(s)
	Requirements	(Identify by key
	(Include course prefix,	assessment
	number, and name.)	number[s] in
		Section II.)
2.1 Computing Systems.		
2.1.1		
Recommend improvements to the design of		
computing devices, based on an analysis of how		
users interact with software and hardware devices.		
2.1.2		
Design projects that combine hardware and		
software components to collect, process, and		
output data.		
2.1.3		
Systematically identify and fix problems with		
computing devices and their components.		
2.1.4		
Explain how abstractions hide the underlying		
implementation details of computing systems		
embedded in everyday objects.		
2.1.5		
Compare levels of abstraction and interactions		
between application software, system software,		
and hardware layers.		
2.1.6		
Develop guidelines that convey systematic trouble-		
shooting strategies that others can use to identify		
and fix errors.		
2.1.7		
Categorize the roles of operating system software.		
2.1.8		
Illustrate ways computing systems implement		
logic, input, and output through hardware		
components.		

2. Networks and the Internet.	
2.2.1	
Model the role of protocols in transmitting data	
across networks and the Internet. (6-8)	
2.2.2	
Explain how physical and digital security measures	
protect electronic information, including public key	
cryptography.	
2.2.3	
Apply multiple methods of encryption to model	
the secure transmission of information.	
2.2.4	
Evaluate the scalability and reliability of networks,	
by describing the relationship between routers,	
switches, servers, topology, and addressing.	
2.2.5	
Give examples to illustrate how sensitive data can	
be affected by malware and other attacks.	
2.2.6	
Recommend security measures to address various	
scenarios based on factors such as efficiency,	
feasibility, and ethical impacts.	
2.2.7	
Compare various security measures, considering	
tradeoffs between the usability and security of a	
computing system.	
2.2.8	
Explain tradeoffs when selecting and implementing	
cybersecurity recommendations.	
2.2.9	
Describe the issues that impact network	
functionality (e.g., bandwidth, load, delay,	
topology).	
2.2.10	
Compare ways software developers protect	
devices and information from unauthorized access,	
considering different classifications of intrusion	
prevention systems and how each identifies	
malicious activity, logs information about the	
activity, reports it, and attempts to block or stop it.	

2.3.1	
Represent data using multiple encoding schemes.	
2.3.2	
Collect data using computational tools and	
transform the data to make the data more useful	
and reliable.	
2.3.3	
Refine computational models based on the data	
they have generated.	
2.3.4	
Translate between different bit representations of	
real-world phenomena, such as characters,	
numbers, and images.	
2.3.5	
Evaluate the tradeoffs in how data elements are	
organized and where data are stored.	
2.3.6	
Create interactive data visualizations using	
software tools to help others better understand	
real-world phenomena.	
2.3.7	
Create computational models that represent the	
relationships among different elements of data	
collected from a phenomena or process.	
2.3.8	
Use data analysis tools and techniques to identify	
patterns in data representing complex systems.	
2.3.9	
Select data collection tools and techniques to	
generate data sets that support a claim or	
communicate information.	
2.3.10	
Evaluate the ability of models and simulations to	
Lest and support the refinement of hypotheses.	
4. Algoriums and Programming. 2.4.1	
2.4.1	
complex problems as algorithms	
Create clearly named variables that represent	
different data types and perform operations (e.g.	

arithmetic relational and logical operations) on	
their values.	
2.4.3	
Design and iteratively develop programs that	
combine control structures, including nested loops	
and compound conditionals.	
2 4 4	
Decompose problems and subproblems into parts	
(functions) to facilitate the design	
implementation and review of programs	
2 4 5	
Create procedures with parameters to organize	
code ad make it easier to reuse	
2.4.6	
Seek and incorporate feedback from team	
members and users to refine a solution that meets	
user needs	
2 4 7	
Incorporate existing code media and libraries into	
original programs, and give attribution.	
2.4.8	
Systematically test and refine programs using a	
range of test cases	
2.4.9	
Distribute tasks and maintain a project timeline	
when collaboratively developing computational	
artifacts	
2 4 10	
Document programs in order to make them easier	
to follow, test, and debug.	
2.4.11	
Create prototypes that use algorithms to solve	
computational problems by leveraging prior	
student knowledge and personal interests.	
2.4.12	
Use lists or arrays to simplify solutions.	
generalizing computational problems instead of	
repeatedly using simple variables.	
2.4.13	
Justify the selection of specific control structures	
when tradeoffs involve implementation.	
readability, and program performance, and explain	
the benefits and drawbacks of choices made.	

2.4.14	
Design and iteratively develop computational	
artifacts for practical intent, personal expression,	
or to address a societal issue by using events to	
initiate instructions.	
2.4.15	
Decompose problems into smaller components	
through systematic analysis, using constructs such	
as procedures, modules, and objects.	
2.4.16	
Create artifacts by using procedures within a	
program, combinations of data and procedures, or	
independent but interrelated programs.	
2.4.17	
Systematically design and develop programs for	
broad audiences by incorporating feedback from	
users.	
2.4.18	
Evaluate licenses that limit or restrict use of	
computational artifacts when using resources such	
as libraries.	
2.4.19	
Evaluate and refine computational artifacts to	
make them more usable and accessible.	
2.4.20	
Design and develop computational artifacts	
working in team roles using collaborative tools and	
pair programming techniques.	
2.4.21	
Document design decisions using text, graphics,	
presentations, and/or demonstrations in the	
development of complex programs.	
2.4.22	
Demonstrate ways a given algorithm applies to	
problems across disciplines.	
2.4.23	
Describe how artificial intelligence drives many	
software and physical systems.	
2.4.24	
Implement an artificial intelligence algorithm to	
play a game against a human opponent or solve a	

2.4.25	
Use and adapt classic algorithms (e.g., shortest	
path, sorting, and searching) to solve	
computational problems.	
2.4.26	
Evaluate algorithms in terms of their efficiency,	
correctness, and clarity.	
2.4.27	
Compare and contrast fundamental data	
structures and their uses.	
2.4.28	
Illustrate the flow of execution of a recursive	
algorithm.	
2.4.29 Construct solutions to problems using	
student-created components, such as procedures,	
nodules and objects.	
2.4.30	
Analyze a large-scale computational problem and	
identify generalizable patterns that can be applied	
to a solution.	
2.4.24	
2.4.31 Demonstrate code rouse by creating programming	
Demonstrate code reuse by creating programming	
2.4.52 Plan and dovelon programs for broad audionces	
using a software life-cycle process	
Explain security issues that might lead to	
compromised computer programs	
2 4 34	
Develop programs for multiple computing	
platforms.	
2.4.35	
Use version control systems, integrated	
development environments (IDEs), and	
collaborative tools and practices (code	
documentation) in a group software project.	
2.4.36	
2.4.36 Develop and use a series of test cases to verify that	
2.4.36 Develop and use a series of test cases to verify that a program performs according to its design	

2.4.37	
Modify an existing program to add additional	
functionality and discuss intended and unintended	
implications (e.g., breaking other functionality).	
2.4.38	
Evaluate key qualities of a program through a	
process such as a code review.	
2.4.39	
Modify an existing program to add additional	
functionality and discuss intended and unintended	
implications (e.g., breaking other functionality).	
2.4.40	
Evaluate key qualities of a program through a	
process such as a code review.	
2.4.41	
Compare multiple programming languages and	
discuss how their features make them suitable for	
solving different types of problems.	
5. Impacts of Computing.	
2.5.1	
Compare tradeoffs associated with computing	
technologies that affect people's everyday	
activities and career options.	
2.5.2	
Discuss issues of bias; accessibility for all users,	
including those with special needs; and usability in	
the design of existing technologies.	
2.5.3	
Collaborate with contributors through strategies	
such as crowdsourcing or surveys when creating a	
computational artifact.	
2.5.4	
Describe tradeoffs between allowing information	
to be public and keeping information private and	
secure, recognizing that nothing posted online is	
private.	
2.5.5	
Evaluate the ways computing impacts personal,	
ethical, social, economic, and cultural practices.	
2.5.6	
Test and refine computational artifacts to reduce	
bias and equity deficits.	

2.5.7	
Demonstrate ways a given algorithm applies to	
problems across disciplines.	
2.5.8	
Use tools and methods for collaboration on a	
project to increase connectivity of people in	
different cultures and career fields.	
2.5.9	
Explain the beneficial and harmful effects that	
intellectual property laws can have on innovation.	
2.5.10	
Explain the privacy concerns related to the	
collection and generation of data through	
automated processes that may not be evident to	
users.	
2.5.11	
Evaluate the social and economic implications of	
privacy in the context of safety, law, and ethics.	
2.5.12	
Evaluate computational artifacts to maximize their	
beneficial effects and minimize harmful effects on	
society.	
2.5.13	
Evaluate the impact of equity, access, and	
influence on the distribution of computing	
resources in the global society.	
2.5.14	
Predict how computational innovations that have	
revolutionized aspects of our culture might evolve.	
2.5.15	
Debate laws and regulations that impact the	
development and use of software.	
2.5.16	
Consider the impact of professional societies (e.g.,	
Association for Computing Machinery, Institute of	
Electrical and Electronics Engineers, Association of	
Information.	

Standard 3 Pedagogy.				
Prior to program completion, prospective computer science teachers demonstrate ability to:				
	Curriculum Components—	Кеу		
Indicators	Courses or Other	Assessment(s)		
	Requirements	(Identify by key		
	(Include course prefix,	assessment		
	number, and name.)	number[s] in		
		Section II.)		
3.1				
Encourage students from underrepresented				
groups to take computer science courses.				
3.2				
Make students aware of trends in the computer				
science job market (e.g., emerging skills sets, entry				
requirements, career paths, and salaries).				
3.3				
Use a variety of instructional strategies, including				
digital and physical (offline or unplugged)				
environments.				
3.4				
Adapt instruction to student interests and abilities.				
3.5				
Incorporate collaboration into instruction.				

Standard 4 Professionalism.				
Prior to program completion, prospective computer science teachers demonstrate ability to:				
	Curriculum Components—	Кеу		
Indicators	Courses or Other	Assessment(s)		
	Requirements	(Identify by key		
	(Include course prefix,	assessment		
	number, and name.)	number[s] in		
		Section II.)		
4.1				
Articulate why all students are capable of learning				
computer science.				
4.2				
Develop computer science curricula.				
4.3				
Stay current with research on computer science				
education, including pedagogy and assessment.				
4.4				
Learn collaboratively with other computer science				
teachers.				

SECTION IV Summary of Field Experiences Prior to Internship

1. List all courses (or other curriculum requirements) that have a required field experience, <u>in the order</u> that the courses are typically taken. *Include the course prefix, number, and title.*

Course Prefix	Course Number	Course Title

- 2. Are field experiences always done in this order? □Yes □No If no, provide a brief explanation.
- 3. Briefly explain how placements are made to ensure that candidates are placed in diverse schools.
- 4. For each field experience, complete a field experience coversheet and attach it to the instructions or assignments for the field experience. Submit these in a Field Experience folder on the flash drive and a section in the binder.