Alabama Course of Study

Mathematics K-12

Differentiated Instructional Guide (D.I.G)

For information regarding the
Differentiated Instructional Guide
contact Special Education Services
Alabama State Department of Education
3345 Gordon Persons Building,
50 North Ripley Street, Montgomery, Alabama 36104;
or by mail to P.O. Box 302101, Montgomery, Alabama
36130-2101; or by telephone at (334) 694-4782.
Speced@alsde.edu

Alabama State Department of Education
Eric G. Mackey, State Superintendent of Education

The Alabama State Board of Education and the Alabama State Department of Education do not discriminate on the basis of race, color, disability, sex, religion, national origin, or age in their programs, activities, or employment and provide equal access to the Boy Scouts and other designated youth groups. The following person is responsible for handling inquiries regarding the non-discrimination policies: Title IX Coordinator, Alabama State Department of Education, P.O. Box 302101, Montgomery, AL 36130-2101, telephone (334) 694-4717.

DIFFERENTIATED INSTRUCTIONAL GUIDE TO THE ALABAMA COURSE OF STUDY: MATHEMATICS Table of Contents

PREFACE 4
ACKNOWLEDGMENTS 5
INTRODUCTION 6
ORGANIZATION OF THE CURRICULUM GUIDE 7
MATHEMATICS CONTENT STANDARDS AND INSTRUCTIONAL OBJECTIVES GRADES K-8
Grade K 10
Grade 1 35
Grade 2 60
Grade 3 92
Grade 4 120
Grade 5 154
Grade 6 181
Grade 7 216
Grade 8 245
STANDARDS FOR HIGH SCHOOL MATHEMATICS
Geometry with Data Analysis 277
Algebra I with Probability 337
Algebra II with Statistics 388
Mathematical Modeling 437

PREFACE

The Differentiated Instructional Guide (DIG) to the Alabama Course of Study: Mathematics is an instructional companion to assist teachers with tailoring instruction to meet the individual needs of all students. Differentiated instruction, as a framework, allows teachers to implement a variety of strategies to maximize student growth and individual success. The format of the document is intentional to provide teachers flexibility in use and aid in targeted, meaningful instruction. The document is organized by grade to allow single to multiple grade printing. The standards are setup one per sheet to allow teachers to utilize the pages in binders, data collection notebooks, instructional tools, etc.

The Differentiated Instructional Guide to the Alabama Course of Study: Mathematics was developed by a diverse group of general and special educators, administrators, parents, and service providers. This Task Force used their academic content knowledge and experiential knowledge related to students with and without disabilities to produce this resource.

ACKNOWLEDGEMENTS

This document was developed by the 2019/2020 Alabama Course of Study Mathematics Task Force composed of both general and special education teachers of elementary, middle school, and high school grade levels. The Alabama State Department of Education (ALSDE) staff who assisted with the development are listed below.

Ms. Taylor Paige Biggs, MS.
Mrs. Emily Bivens, M.Ed

Mrs. Emily Bivens, M.Ed.
Mrs. Teresa Burden, Ed.S
Mrs. Becky Cornelius, Ed.S.
Ms. Tiffany Countryman, Ed.S.
Ms. Kim Daily, M.Ed.
Mrs. Dana Davis, M.Ed.
Mr. Derallus Davis, M.Ed.
Ms. Anna Laura Dyer, Ed.S.
Mrs. Erica Dunwoody, M.Ed.
Ms. Ali Grace Eiland, M.Ed.
Ms. Michelle Gibbons, B.S.
Ms. Briana Gibson, M. Ed.
Mrs. Lori Ann Gibson, Ed.S
Mrs. Ann-Marie Grav, M.Ed.

Ms. Adriane Howard, B.S.
Ms. Amy Johnson, M.Ed.

Ms. Jessica Johnson, B.S.
Ms. Hailey King, B.S.
Ms. Tammy King, M.Ed.
Ms. Julia Kochan, M.Ed.
Mrs. Kristy Mann, B.S.
Ms. Meagan McDonald, B.S.
Mrs. Shelly Munger, M.Ed.
Miss Michele Murray, M.Ed.
Mrs. Chelsea Newels, M.Ed.
Mrs. Brandy Quattlebaum, M.Ed.
Mrs. Anna Laura Reid, Ed.S
Mr. John Rice, B.S.
Mr. Terry Chad Sorrells, Ed.S.
Dr. Marilyn Strutchens, Ph.D.
Ms. Lateatrice Thomas, Ed.S.
Mrs. Lori White, M.A.
Mrs. Tamika Whitt-Wright, Ed.S. J.D.

Mrs. Kimberly Baker, M.S. Special Education Services
Mr. Tod Beers, M.Ed., AMSTI
Ms. Karma Clarke, Ed.S., AMSTI
Ms. Diane Duncan, Ed.S., ALSDE
Mrs. Susan Goldthwaite, M. Ed., Special Education Services
Mrs. Elizabeth Greene, M.Ed., Special Education Services
Ms. Elizabeth Hammonds, M.Ed., AMSTI
Mrs. Pamela Ivey, M.Ed., Special Education Services
Mrs. Elisabeth Newell, Ed.S. Special Education Services
Mrs. Phenicia Nunn, M.Ed., AMSTI
Ms. Nannette Pence, M.Ed., Assessment
Ms. Gwendolyn Jordan Preston, M.Ed., Special Education Services
Mrs. Tina Sanders, Ed.S., Special Education Services
Mrs. Teri Shriver, Ed.S., Special Education Services
Ms. Kristie Taylor, M.Ed., AMSTI
Mr. Joel White, Ed.S., AMSTI
Mrs. Kathy Wilkins, M.Ed., Special Education Services

Introduction

The Differentiated Instructional Guide is a companion document to the 2019 Alabama Course of Study: Mathematics, for Grades K-12. Content standards contained within the course of study document may be accessed on the ALSDE website at https://www.alabamaachieves.org/. On the home page, hover over Teachers \& Administrators, and scroll down and select Academic Standards. Scroll down and click on Mathematics.

Educators are reminded that content standards indicate minimum content what all students should know and be able to do by the end of each grade level or course. Local education agencies may have additional instructional or achievement expectations and may provide instructional guidelines that address content sequence, review, and remediation.

The Differentiated Instructional Guide identifies the progression of learning towards a content standard, as well as the prior knowledge skills necessary to construct a student's connection between old and new knowledge. Differentiated instruction "is a philosophy that enables educators to plan strategically in order to reach the needs of diverse learners in the classroom to achieve targeted standards" (Gregory \& Chapman, 2007, p. 2). Through the identified progressions of learning objectives, teachers can make unique planning decisions focused on the learner's needs that align with the lesson outcomes. The prior knowledge skills identified for each content standard helps teachers develop instructional activities that build off a student's strengths and acknowledge and address their weaknesses. Using this guide to differentiate instruction and activate prior knowledge, teachers can prepare students for the study of the grade-level and course content standards at individual ability levels and may plan instruction to address the achievement gap experienced by some students. The goal of this guide is to assist teachers to react responsively to a learner's need and to enable a student to reach his or her maximum ability and promote individual success.

Organization of the Guide

The organizational components of this guide align with the organization and format progression of the 2019 Mathematics course of study that encompasses sections for content areas, content clusters, content standards, progression of learning objectives and prior knowledge skills.

Organization of the Guide

Content standards preceded by an asterisk (*) indicate that the standard has been identified as a critical standard by Alabama Math, Science, and Technology Initiative (AMSTI) of the ALSDE. Critical standards and other related resources can be accessed by clicking each of the grade bands, or by visiting the AMSTI website:
$\underline{\underline{K-2}} \quad \underline{3-5} \quad \underline{6-8} \quad \underline{9-12}$

The standards marked with an asterisk are required for earning course credit for the Essentials Diploma Pathway in Grades 912. The courses are Geometry with Data Analysis, Algebra I with Probability, Algebra II with Statistics, and Mathematical Modeling. General education and special education teachers are encouraged to utilize the proficiency scales (found through the grade band links above) in working with students on this pathway, to document progress towards the standards.

The system for numbering Mathematics Objective 1.3.5., for example, is based upon the following:

Utilization of the Guide (This example is from Geometry with Data Analysis)

Kindergarten

Foundations of Counting

Cluster

Know number names and the count sequence.
Note on number reversals:
Learning to write numerals is generally more difficult than learning to read them. It is common for students to reverse numerals at this stage.

2019 Math COS Standard

1. *Count forward orally from 0 to 100 by ones and by tens. Count backward orally from 10 to 0 by ones.

Learning Objectives
 Prior Knowledge Skills

M.K.1.1: Count backwards from 5 to 0 by ones.
\square M.K.1.2: Mimic counting backwards from 5 to 0 by ones.
\square M.K.1.3: Count to 50 by ones.
\square M.K.1.4: Count to 50 by tens.
\square M.K.1.5: Count to 20 by ones.
\square M.K.1.6: Count to 10 by ones.
\square M.K.1.7: Mimic counting by tens.
\square M.K.1.8: Mimic counting by ones.Count to 20 and above.Mimic counting by onesRecognize numbers from one to tenBecome interested in how many objects she/he has.Continue to have an interest in counting.Understand the concept of size and amount.Pair the number of objects counted with "how many."
\square Understand that the last number name tells the number of objects counted.
$\square \quad$ Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).
\square Count objects one-by-one using only one number per object (up to ten objects).Recognize that numbers and numerals have meaning.Recognize numerals 0 (zero) through 10.Rote count to ten.Communicate some number words.Communicate the number word one.Recognize after.
\square Recognize before
\square Enjoy playing with all kinds of objects.
$\square \quad$ Point to matching or similar objects.

Foundations of Counting

Cluster

Know number

 names and the count sequence.Note on number reversals:
Learning to write numerals is generally more difficult than learning to read
them. It is common for students to reverse numerals at this stage.

2019 Math COS Standard
2. *Count to 100 by ones beginning with any given number between 0 and 99.

Learning Objectives
 Prior Knowledge Skills

\square M.K.2.1: Count forward to 100 from a number over 50.
\square M.K.2.2: Count forward to 100 from a number between 2 and 50 .
\square M.K.2.3: Count forward to 50 from a given number.
\square M.K.2.4: Count to 100 by ones.
\square M.K.2.5: Mimic counting to 100 by ones.
\square M.K.2.6: Count to 50 by ones.
\square M.K.2.7: Mimic counting to 50 by ones.
\square Count to 20 and above.
\square Mimic counting by ones.
\square Recognize numbers from one to ten.
\square Become interested in how many objects she/he has.
\square Continue to have an interest in counting.
\square Understand the concept of size and amount.
\square Pair the number of objects counted with "how many." counted.
\square Understand that the last number name tells the number of objects
\square Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).
\square Count objects one-by-one using only one number per object (up to ten objects).
\square Recognize that numbers and numerals have meaning.
\square Recognize numerals 0 (zero) through 10.
\square Rote count to ten.
\square Communicate some number words.
\square Recognize after.
\square Recognize before.
\square Enjoy playing with all kinds of objects.
Point to matching or similar objects.

Foundations of Counting

Cluster
Know number
names and the count sequence.
Note on number reversals:
Learning to write numerals is generally more difficult than learning to read them. It is common for students to reverse numerals at this stage.

2019 Math COS Standard

3. Write numerals from 0 to 20.

a. Represent 0 to 20 using concrete objects when given a written numeral from 0 to 20 (with 0 representing a count of no objects).

Learning Objectives

Prior Knowledge Skills

M.K.3.1: Write numbers 0 to 10.
M.K.3.2: Match numerals to quantity 11 to 20.
\square M.K.3.3: Match numerals to quantity 0 to 10.
\square M.K.3.4: Recognize written numerals 0 to 20.
\square M.K.3.5: Demonstrate one to one
correspondence for a group of objects 6 to 20.
\square M.K.3.6: Demonstrate one to one
correspondence for a group of objects 0 to 5 .
\square M.K.3.7: Trace numerals 0 to 20.
\square M.K.3.8: Make purposeful marks such as lines and circles.

Count to 20 and above.
\square Mimic counting by ones.
\square Recognize numbers from one to ten.
\square Become interested in how many objects she/he has.
\square Continue to have an interest in counting.
\square Understand the concept of size and amount.
\square Notice same/different and some/all.
\square Understand that words can label sameness and differences.
\square Understand that some have more, and some have less.
\square Become more interested in the concept of some and all.
\square Make purposeful marks.
\square Given a set number of objects one through ten, answer the question "How many?".
\square Pair the number of objects counted with "how many."
\square Understand that the last number name tells the number of objects counted.
\square Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects.
\square Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).
\square Count objects one-by-one using only one number per object (up to ten objects).
\square Recognize that numbers and numerals have meaning.
Recognize numerals 0 (zero) through 10.

$\square \quad$ Identify the difference between written numbers and other written things.
$\square \quad$ Identify the difference between written numbers and objects.Rote count to ten.Communicate some number words.Recognize after.Recognize before.Enjoy playing with all kinds of objects.Point to matching or similar objects.

Foundations of Counting

Cluster

Know number
names and the count sequence.
Note on number reversals:
Learning to write numerals is generally more difficult than learning to read them. It is common for students to reverse numerals at this stage.

2019 Math COS Standard

4. *Connect counting to cardinality using a variety of concrete objects.

a. Say the number names in consecutive order when counting objects.
b. Indicate that the last number name said tells the number of objects counted in a set.
c. Indicate that the number of objects in a set is the same regardless of their arrangement or the order in which they were counted.
d. Explain that each successive number name refers to a quantity that is one larger.

Learning Objectives

M.K.4.1: Define number and counting.
\square M.K.4.2: Identify correct number of objects for a given number up to 20.
\square M.K.4.3: Identify different size groups of objects up to 10.
\square M.K.4.4a: Count to 20 by ones
\square M.K.4.5a: Mimic counting objects
\square M.K.4.6b: Know that the last number tells how many when counting 0 to 5 objects.
\square M.K.4.7b: Mimic counting objects up to 20 .
\square M.K.4.8b: Count to 20 by ones.
\square M.K.4.9b: Mimic counting to 20 by ones.
\square M.K.4.10c: Define one larger/one more.
\square M.K.4.11c: Count objects in a group and identify total after adding one more.
\square M.K.4.12c: Count in sequential order.
\square M.K.4.13c: Mimic counting in sequential order.

Prior Knowledge Skills

Count to 20 and above.
\square Mimic counting by ones.Recognize numbers from one to ten.
\square Become interested in how many objects she/he has.
\square Continue to have an interest in counting.
\square Understand the concept of size and amount.
\square Notice same/different and some/all.
\square Understand that words can label sameness and differences.
\square Understand that some have more, and some have less.
\square Become more interested in the concept of some and all.
\square Given a set number of objects one through ten, answer the question "How many?".
\square Pair the number of objects counted with "how many."
\square Understand that the last number name tells the number of objects counted.
\square Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects.
\square Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).

Foundations of Counting

Cluster
Know number
names and the count sequence.
Note on number reversals:
Learning to write numerals is generally more difficult than learning to read
them. It is common for students to reverse numerals at this stage.

2019 Math COS Standard

5. *Count to answer "how many?" questions.
a. Count using no more than 20 concrete objects arranged in a line, a rectangular array, or a circle.
b. Count using no more than 10 concrete objects in a scattered configuration.
c. Draw the number of objects that matches a given numeral from 0 to 20 .

Learning Objectives

Prior Knowledge Skills
M.K.5.1: Define how many, all together, and in all.
\square M.K.5.2: Demonstrate one to one correspondence.
Example: Point to only one object when counting and stop counting when all objects have been touched.
\square M.K.5.3: Count to 20 by ones.

Understand amount words, such as more, less, and another.
\square Begin to understand that parts of an object can make a whole.
\square Be interested in who has more or less.
\square Understand the concept of "less than".
\square Mimic counting by ones.
\square Recognize numbers from one to ten.
\square Become interested in how many objects she/he has.
\square Continue to have an interest in counting.
\square Understand the concept of size and amount.
\square Make purposeful marks.
\square Given a set number of objects one through ten, answer the question "How many?"
\square Pair the number of objects counted with "how many."
\square Understand that the last number name tells the number of objects counted.
\square Establish one-to-one correspondence between numbers and objects when given a picture, a drawing or objects.
\square Pair a group of objects with a number representing the total number of objects in the group.
\square Count objects one-by-one using only one number per object.
\square Recognize that numbers and numerals have meaning.
\square Recognize numerals 0 through 10.
\square Rote count to ten.
\square Communicate number words.

		\square 	Recognize after. \square
Recognize before.			

Foundations of Counting

Cluster	2019 Math COS Standard	
Compare numbers.	6. *Orally identify whether the number of objects in one group is greater/more than, less/fewer than, or equal/the same as the number of objects in another group, in groups containing up to 10 objects, by using matching, counting, or other strategies.	
	Learning Objectives	Prior Knowledge Skills
	M.K.6.1: Define greater than, less than, and equal to. M.K.6.2: Count to 20 by ones. M.K.6.3: Count objects up to ten.	Understand amount words, such as more, less, and another. Begin to understand that parts of an object can make a whole. Become more interested in the concept of some and all. Be interested in who has more or less. Understand the concept of "less than". Mimic counting by ones. Recognize numbers from one to ten. Become interested in how many objects she/he has. Understand the concept of size and amount. Given a set number of objects one through ten, answer the question "How many?". \square Pair the number of objects counted with "how many." \square Understand that the last number name tells the number of objects counted. \square Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects. \square Pair a group of objects with a number representing the total number of objects in the group. \square Count objects one-by-one using only one number per object. \square Recognize that numbers and numerals have meaning. \square Recognize numerals 0 through 10. \square Rote count to ten. \square Communicate number words.

Foundations of Counting

Cluster	2019 Math COS Standard	
Compare numbers.	7. *Compare two numbers between 0 and 10 presented as written numerals (without using inequality symbols).	
	Learning Objectives	Prior Knowledge Skills
	M.K.7.1: Compare numbers 1 to 10 using objects. M.K.7.2: Name numerals 1 to 10. M.K.7.3: Identify numerals 1 to 10. M.K.7.4: Count to 10 by ones.	Recognize numbers from one to ten. Understand amount words, such as more, less, and another. Begin to understand that parts of an object can make a whole. Become more interested in the concept of some and all. Be interested in who has more or less. Understand the concept of "less than". Mimic counting by ones. Recognize numbers from one to ten. Become interested in how many objects she/he has. Understand the concept of size and amount. Given a set number of objects one through ten, answer the question "How many?". Pair the number of objects counted with "how many." Understand that the last number name tells the number of objects counted. $\square \quad$ Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects. $\square \quad$ Pair a group of objects with a number representing the total number of objects in the group. \square Recognize less/fewer. \square Recognize greater/more. \square Recognize same/equal.

Operations and Algebraic Thinking

Clu	2019 Math COS Standard	
Understand addition as putting	8. *Represent addition and subtraction up to 10 with concrete objects, fingers, pennies, mental images, drawings, claps or other sounds, acting out situations, verbal explanations, expressions, or equations.	
	Learning	Prior Knowledge Skills
understand subtraction as taking apart and taking from. Note: Drawings need not be detailed but should show the mathematics in the problem.	\square M.K.8.1: Define addition as combining groups of objects. M.K.8.2: Define subtraction as separating groups of objects. M.K.8.3: Represent numbers with objects or drawings. M.K.8.4: Separate sets with nine or fewer objects. M.K.8.5: Combine objects to form sets up to nine.	\square Notice same/different and some/all. Subtract one from a set of objects (up to 10 objects). Add one to a set of objects (up to 10 objects). Given a group of objects (ten or less), divide the group into smaller groups in various ways. Given small groups of objects, create larger groups by combining the small groups. \square Take away objects from a large group to create two smaller groups. \square Put together two small groups of objects to create a larger group. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Rote count to ten. Enjoy playing with all kinds of objects. Point to matching or similar objects.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand addition as	9. *Solve addition and subtraction word problems, and add and subtract within 10 , by using concrete objects or drawings to represent the problem.	
	Learning Object	Prior Knowl
and adding to and understand subtraction as taking apart and taking from. Note: Drawings need not be detailed but should show the mathematics in the problem.	\square M.K.9.1: Understand key words in addition and subtraction word problems. Examples: all together, how many more, how many are left, in all. M.K.9.2: Represent numbers with objects or drawings. \square M.K.9.3: Separate sets with nine or fewer objects. \square M.K.9.4: Combine objects to form sets up to nine.	Notice same/different and some/all. Use models, solve word problems with two given sets (e.g., objects, drawings); using "putting together"; add within nine. Use models, solve word problems with two given sets (e.g., objects, drawings); using "putting together"; add within five. Represent addition and subtraction with objects, pictures, fingers, or sounds within nine. Understand addition as putting together and subtraction as taking from. $\square \quad$ Establish one-to-one correspondence between numbers and objects. Rote count to 10. Enjoy playing with all kinds of objects. Point to matching or similar objects.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand addition as putting together	10. *Decompose numbers less than or equal to 10 into pairs of smaller numbers in more than one way, by using concrete objects or drawings, and record each decomposition by a drawing or equation. Example: $5=2+3$ and $5=4+1$	
	Learning Objectives	Prior Knowledge Skills
understand subtraction as taking apart and taking from. Note: Drawings need not be detailed but should show the mathematics in the problem.	M.K.10.1: Identify plus, minus, and equal signs. M.K.10.2: Match numerals to objects or drawings. M.K.10.3: Identify numerals 1 to 10. M.K.10.4: Count 0 to 10.	Notice same/different and some/all. Recognize numbers from one to ten. Subtract one from a set of objects (up to five objects). Add one to a set of objects (up to five objects). Given a group of objects (ten or less), divide the group into smaller groups in various ways. Given small groups of objects, create larger groups by combining the small groups. Take away objects from a large group to create two smaller groups. Put together two small groups of objects to create a larger group. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. $\square \quad$ Rote count to ten.

Operations and Algebraic Thinking

Cluster	201
Understand addition as putting	

2019 Math COS Standard

11. *For any number from 0 to 10, find the number that makes 10 when added to the given number, by using concrete objects or drawings, and record the answer with a drawing or equation.

together and

adding to and understand subtraction as taking apart and taking from.
Note: Drawings need not be detailed but should show the mathematics in the problem.

| Lea |
| :--- | :--- |
| \square |
| \square |
| \square |
| \square |

M.K.11.1: Write numerals from 0 to 10 .
\square M.K.11.2: Represent a given numeral 1 to 10 with objects or drawings.
\square M.K.11.3: Count forward from a given number 1 to 10.
\square M.K.11.4: Model joining sets of objects to total 10.

Prior Knowledge Skills

Notice same/different and some/all.
\square Recognize numbers from one to ten.
\square Add one to a set of objects (up to five objects).
\square Given small groups of objects, create larger groups by combining the small groups.
$\square \quad$ Put together two small groups of objects to create a larger group.
\square Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.
\square Rote count to ten.
\square Understand number words.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand	12. *Fluently add and subtract within 5.	
addition as putting	Learning Objectives	Prior Knowledge Skills
together and adding to and understand subtraction as taking apart and taking from. Note: Drawings need not be detailed but should show the mathematics in the problem.	\square M.K.12.1: Decompose numbers up to 5 using objects or drawings. \square M.K.12.2: Compose numbers up to 5 using objects or drawings. M.K.12.3: Count backward from 5. M.K.12.4: Count forward to 5.	\square Notice same/different and some/all. Subtract one from a set of objects (up to five objects). Given a group of objects (ten or less), divide the group into smaller groups in various ways. Take away objects from a large group to create two smaller groups. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Understand number words.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand simple patterns.	13. Duplicate and extend simple pattern	ing concrete objects.
	Learning Objectives	Prior Knowledge Skills
	M.K.13.1: Define ones and tens. M.K.13.2: Match the number in the ones and tens position to a pictorial representation or manipulative of the value. \square M.K.13.3: Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. M K.13.4: Count objects up to 10.	Notice same/different and some/all. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Understand first and next.

Operations with Numbers

Cluster	2019 Math COS Standard	
Work with numbers 11-19 to gain foundations for place value.	14. Compose and decompose numbers from 11 to 19 by using concrete objects or drawings to demonstrate understanding that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.	
	Learning Objectives	Prior Knowledge Skills
	M.K.14.1: Define ones and tens. M.K.14.2: Match the number in the ones and tens position to a pictorial representation or manipulative of the value. \square M.K.14.3: Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. M.K.14.4: Count objects up to 10.	Notice same/different and some/all. Recognize numbers from zero to ten. Add one to a set of objects (up to 10 objects). Given small groups of objects, create larger groups by combining the small groups. Subtract one from a set of objects (up to five objects). Put together two small groups of objects to create a larger group. Given a group of objects (ten or less), divide the group into smaller groups in various ways. Take away objects from a large group to create two smaller groups. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Rote count to ten. Understand number words.

Data Analysis

Cluster
Collect and
analyze data and
interpret results.

2019 Math COS Standard

15. Classify objects into given categories of 10 or fewer; count the number of objects in each category and sort the categories by count.
a. Categorize data on Venn diagrams, pictographs, and "yes-no" charts using real objects, symbolic representations, or pictorial representations.

Learning Objectives

Prior Knowledge Skills

\square M.K.15.1: Identify more and less when given two groups of objects.
\square M.K.15.2: Identify object attributes. Examples: color, shape, size, texture, use.
\square M.K.15.3: Count objects up to ten.
\square M.K.15.4: Count to 10 by ones.
\square Participate in creating charts or graphs to represent data collection.Notice same/different and some/all.
\square Recognize numbers from one to ten.
\square Given a group of objects (ten or less), divide the group into smaller groups in various ways
\square Given small groups of objects, create larger groups by combining the small groups.
$\square \quad$ Take away objects from a large group to create two smaller groups.
$\square \quad$ Put together two small groups of objects to create a larger group.
$\square \quad$ Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.
$\square \quad$ Rote count to ten.
\square Begin to name and match colors, sizes, and shapes.
\square Enjoy playing with all kinds of objects.
\square Point to matching or similar objects.
\square Understand that words can label sameness and differences.
\square Understand that some have more, and some have less.
\square Sort objects based on shape or color.
$\square \quad$ Name and match primary colors.

Measurement

Cluster	2019 Math COS Standard	
Describe and compare measurable attributes.	16. Identify and describe measurable attributes (length, weight, height) of a single object using vocabulary such as long/short, heavy/light, or tall/short.	
	Learning Objectives	Prior Knowledge Skills
	M.K.16.1: Define length and weight. M.K.16.2: Explore objects in relationship to length and weight.	\square Notice same/different and some/all. Begin to name and match colors, sizes, and shapes. Enjoy playing with all kinds of objects. Point to matching or similar objects. Understand that words can label sameness and differences. Understand that some have more, and some have less. Sort a variety of objects in a group that have one thing in common. Recognize and sort familiar objects with the same size. Have an interest in the order of things. Understand the concept of smallest and shortest. Understand the concept of same shape and size. Understand the concept of smallest and shortest. Understand the concept of light and heavy. Understand the concept long and short. Classify common objects according to height (tall/short). Classify common objects according to length (long/short). Classify common objects according to weight (heavy/light).

Measurement

Cluster	2019 Math COS Standard	
Describe and compare measurable attributes.	17. *Directly compare two objects with a measurable attribute in common to see which object has "more of" or "less of" the attribute and describe the difference. Example: Directly compare the heights of two children and describe one child as "taller" or "shorter".	
	Learning Objectives	Prior Knowledge Skills
	M.K.17.1: Use vocabulary related to length and weight. Example: longer, shorter, heavier, lighter. M.K.17.2: Identify objects by length and weight. Example: shortest pencil, heaviest rock. M.K.17.3: Sort objects according to measurable attributes.	\square Notice same/different and some/all. Begin to name and match colors, sizes, and shapes. Enjoy playing with all kinds of objects. Point to matching or similar objects. Understand that words can label sameness and differences. Understand that some have more, and some have less. Sort objects based on shape or color. Name and match primary colors. Sort objects based on both color and shape. Sort a variety of objects in a group that have one thing in common. Recognize and sort familiar objects with the same color, shape, or size. Understand the concept of same shape and size. Understand the concept of smallest and shortest. Understand the concept of light and heavy. Understand the concept long and short. Classify common objects according to height (tall/short). Classify common objects according to length (long/short). Classify common objects according to weight (heavy/light). Classify common objects according to size (big/small). Communicate long, short, heavy, light, big, small.

Geometry

Cluster	2019 Math COS Standard	
Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).	18. Describe objects in the environment using names of shapes and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.	
	Learning Objectives	Prior Knowledge Skills
	\square M.K.18.1: Recognize location and position. Examples: above, below, besides, in front of, behind, next to. \square M.K.18.2: Identify cubes, cones, cylinders, and spheres. \square M.K.18.3: Imitate actions to place items. Examples: in, on, under. \square M.K.18.4: Match shapes.	\square Notice same/different and some/all. Begin to name and match colors, sizes, and shapes. Enjoy playing with all kinds of objects. Point to matching or similar objects. Understand that words can label sameness and differences. Understand that some have more, and some have less. Sort objects based on shape or color. Name and match primary colors. Sort objects based on both color and shape. Sort a variety of objects in a group that have one thing in common. Recognize and sort familiar objects with the same color, shape, or size. Understand and point to a triangle, a circle, and a square, rectangle. Understand the concept of same shape and size. Have an interest in the order of things. Understand the concept of smallest and shortest. Begin to learn positional words.

Geometry

Cluster	2019 Math COS Standard	
Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).	19. Correctly name shapes regardless of their orientations or overall sizes.	
	Learning Objectives	Prior Knowledge Skills
	M.K.19.1: Recognize shapes. M.K.19.2: Sort shapes with different attributes. Examples: sort different size or color squares, circles, triangles, rectangles, or hexagons.	Notice same/different and some/all. Begin to name and match colors, sizes, and shapes. Enjoy playing with all kinds of objects. Point to matching or similar objects. Understand that words can label sameness and differences. Understand that some have more, and some have less. Sort objects based on shape or color. Name and match primary colors. Sort objects based on both color and shape. Sort a variety of objects in a group that have one thing in common. Recognize and sort familiar objects with the same color, shape, or size. Understand and point to a triangle, a circle, a square and rectangle. Understand the concept of same shape and size.

Geometry

Cluster	2019 Math COS Standard	
	20. Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").	
	Learning Objectives	Prior Knowledge Skills
(squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).	M.K.20.1: Define two-dimensional and threedimensional. Example: two-dimensional shapes are flat, three-dimensional figures are solid. M.K.20.2: Sort flat and solid objects. M.K.20.3: Explore two-dimensional shapes and three-dimensional figures.	\square Notice same/different and some/all. Begin to name and match sizes and shapes. Enjoy playing with all kinds of objects. Point to matching or similar objects. Understand that words can label sameness and differences. Sort objects based on shape. Recognize and sort familiar objects with the same shape or size. Understand and point to a triangle, a circle, a square and rectangle. Understand the concept of same shape and size.

Geometry

Cluster
Analyze, compare, create, and compose shapes.

2019 Math COS Standard

21. Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (number of sides and vertices or "corners"), and other attributes.
Example: having sides of equal length.

Learning Objectives

Prior Knowledge Skills

\square Notice same/different and some/all.
\square M.K.21.2: Use vocabulary related to twodimensional shapes and three-dimensional figures.
Examples: vertices (corners), faces (flat surfaces), edges, sides, angles.
\square M.K.21.3: Recognize vocabulary related to two-dimensional shapes and threedimensional figures.
\square M.K.21.4: Identify two-dimensional shapes and three-dimensional figures.
\square M.K.21.5: Identify shapes.

Geometry

Cluster	2019 Math COS Standard	
Analyze, compare, create, and compose shapes.	22. Model shapes in the world by building them from sticks, clay balls, or other components and by drawing them.	
	Learning Objectives	Prior Knowledge Skills
	\square M.K.22.1: Recognize attributes of shapes.	\square Notice same/different and some/all.
	\square M.K.22.2: Identify cubes, cones, cylinders,	\square Begin to name and match sizes and shapes.
	and spheres.	\square Enjoy playing with all kinds of objects.
	\square M.K.22.3: Identify squares, circles, triangles,	$\square \quad$ Point to matching or similar objects.
	rectangles, and hexagons.	$\square \quad$ Understand that words can label sameness and differences.
	\square M.K.22.4: Identify shapes in the environment.	\square Sort objects based on shape. \square Recognize and sort familiar objects with the same shape or size.
	\square M.K.22.5: Trace shapes.	\square Understand and point to a triangle, a circle, a square and rectangle.
	M.K.22.6: Make purpose marks such as lines and circles.	\square Understand the concept of same shape and size.

Geometry

Cluster	2019 Math COS Standard	
Analyze, compare, create, and compose shapes.	23. Use simple shapes to compose larger Example: Join two triangles with full s	hapes. es touching to make a rectangle.
	Learning Objectives	Prior Knowledge Skills
	M.K.23.1: Combine shapes to fill the area of a given shape. M.K.23.2: Decompose pictures made of simple shapes. M.K.23.3: Match shapes. M.K.23.4: Match pieces by color, image, or shape to complete a puzzle.	Notice same/different and some/all. Begin to name and match sizes and shapes. Enjoy playing with all kinds of objects. Point to matching or similar objects. Understand that words can label sameness and differences. Sort objects based on shape. Recognize and sort familiar objects with the same shape or size. Understand and point to a triangle, a circle, a square and rectangle. Understand the concept of same shape and size.

Grade 1

Operations and Algebraic Thinking

Cluster

Represent and

 solve problems involving addition and subtraction.Note: Students use properties of operations and different strategies to find the sum of three whole numbers, such as counting on, making tens, decomposing numbers, doubles, and near doubles.

2019 Math COS Standard

1. *Use addition and subtraction to solve word problems within 20 by using concrete objects, drawings, and equations with a symbol for the unknown number to represent the problem.
a. Add to with change unknown to solve word problems within 20.
b. Take from with change unknown to solve word problems within 20.
c. Put together/take apart with addend unknown to solve word problems within 20.
b. Compare quantities, with difference unknown, bigger unknown, and smaller unknown while solving word problems within 20.

Learning Objectives

\square M.1.1.1: Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
\square M.1.1.2: Understand key words in addition and subtraction word problems. Examples: sum, difference, all together, how many more, how many are left, in all.
$\square \quad$ M.1.1.3: Define subtraction as separating groups of objects, taking from, or taking apart.
\square M.1.1.4: Define addition as combining groups of objects, adding to, or putting together.
\square M.1.1.5: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.
\square M.1.1.6: Represent numbers with objects or drawings.
\square M.1.1.7: Use objects to combine and separate groups.

Prior Knowledge Skills

\square Define how many, all together, and in all.
\square Count to 20 by ones.
\square Demonstrate 1:1 correspondence.
\square Mimic counting objects in sequential order arranged in a line, circle, or array.
\square Count no more than 5 objects in a scattered configuration.
\square Mimic counting no more than 5 objects in a scattered configuration.
\square Count to 10 by ones.
\square Count in sequential order.
\square Mimic counting in sequential order.
\square Demonstrate one to one correspondence.
\square Make purposeful marks such as lines and circles.
\square Understand amount words, such as more, less, and another.
\square Begin to understand that parts of an object can make a whole.
\square Be interested in more and less.
\square Understand the concept of "less than".
\square Mimic counting by ones.
\square Recognize numbers from one to ten.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Represent and solve problems involving addition	2. *Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 by using concrete objects, drawings, or equations with a symbol for the unknown number to represent the problem.	
	Learning Objectives	Prior Knowledge Skills
Note: Students use properties of operations and different strategies to find the sum of three whole numbers, such as counting on, making tens, decomposing numbers, doubles, and near doubles.	M.1.2.1: Solve addition word problems with sums less than or equal to 10, e.g., by using objects or drawings to represent the problem. M.1.2.2: Understand key words in addition word problems. Examples: sum, all together, how many more, in all. M.1.2.3: Define addition as combining groups of objects, adding to, or putting together. M.1.2.4: Represent addition with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations. M.1.2.5: Represent numbers with objects or drawings. M.1.2.6: Use objects to combine groups.	Understand key words in addition and subtraction word problems. Examples: all together, how many more, how many are left, in all. Represent numbers with objects or drawings. Separate sets with nine or fewer objects. Combine objects to form sets up to nine. Represent addition and subtraction with objects, pictures, fingers, or sounds within twenty. Understand addition as putting together and subtraction as taking from. Establish one-to-one correspondence between numbers and objects. Rote count to 20. Notice same/different and some/all. Establish one-to-one correspondence between numbers and objects. \square Point to matching or similar objects.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand and apply properties of operations and the relationship between addition and subtraction. Note: Students need not use formal terms for these properties.	3. Apply properties of operations as strategies to add and subtract. Examples: If $8+3=11$ is known, then $3+8=11$ is also known (commutative property of addition). To add $2+6+4$, the second and third numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition). When adding 0 to a number, the result is the same number (identity property of zero for addition).	
	Learning Objectives	Prior Knowledge Skills
	M.1.3.1: Define addition and subtraction. M.1.3.2: Recognize properties of operations. M.1.3.3: Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$). M.1.3.4: Apply signs,+- , $=$ to actions of joining and separating sets. M 1.3.5: Identify fact families to ten. M.1.3.6: Recognize the value of zero.	Decompose numbers up to 5 using objects or drawings. Compose numbers up to 5 using objects or drawings. Count backward from 5. Count forward to 5. Write numerals from 0 to 10 . Represent a given numeral 1 to 10 with objects or drawings. Count forward from a given number 1 to 10. Model joining sets of objects to total 10. Identify plus, minus, and equal signs. Match numerals to objects or drawings. Identify numerals 1 to 10 . Count 0 to 10.- Add and subtract numbers within 20 using objects, pictures, and fingers. $\square \quad$ Understand key words in addition and subtraction word problems. Examples: all together, how many more, how many are left, in all. Represent numbers with objects or drawings. Separate sets with nine or fewer objects. Combine objects to form sets up to nine. Count items in a set up to twenty. Establish one-to-one correspondence between numbers and objects. $\square \quad$ Using counting, find one less than a number 2 through 20.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand and apply properties	4. Explain subtraction as an unknown-addend problem. Example: subtracting 10-8 by finding the number that makes 10 when added to 8 .	
of operations	Learning Objectives	Prior Knowledge Skills
and the relationship between addition and subtraction. Note: Students need not use formal terms for these properties.	M.1.4.1: Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$). M.1.4.2: Identify fact families to ten. M.1.4.3: Recall basic addition facts to ten. M.1.4.4: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.	Decompose numbers up to 5 using objects or drawings. Compose numbers up to 5 using objects or drawings. Count backward from 5. Count forward to 5 . Add and subtract numbers within 20 using objects, pictures, and fingers. Pair "taking away" with subtraction. Take a smaller set out of a larger set. Pair putting together with adding. Combine two sets to make a larger set up to twenty. Separate from a larger group to make 2 smaller groups. Count items in a set up to twenty. Establish one-to-one correspondence between numbers and objects. \square Understand one less than a number 2 through 20. $\square \quad$ Understand one more than a number 1 through 20. \square Rote count to 20.

Operations and Algebraic Thinking

Cluster Add and subtract within 20. Note: Fluency involves a mixture of "just knowing" answers, knowing answers from patterns, and knowing answers from the use of strategies. The word fluently is used in the standards to mean accurately, efficiently, and flexibly.	2019 Math COS Standard	
	5. Relate counting to addition and subtr	n. Example: counting on 2 to add 2.
	Learning Objectives	Prior Knowledge Skills
	M.1.5.1: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations. M.1.5.2: Count forward and backward from a given number. M.1.5.3: Count to 20 by ones.	Mimic counting backwards from 5 to 0 by ones. Count to 50 by ones. Count to 50 by tens. Count to 20 by ones. Count to 10 by ones. Mimic counting by tens. Mimic counting by ones. Add and subtract numbers within 20 using objects, pictures, and fingers. Pair "taking away" with subtraction. Take a smaller set out of a larger set. Pair putting together with adding. Combine two sets to make a larger set up to twenty. Separate from a larger group to make 2 smaller groups. Count items in a set up to twenty. Establish one-to-one correspondence between numbers and objects. Understand one less than a number 2 through 20. Understand one more than a number 1 through 20. Rote count to 20.

Operations and Algebraic Thinking

Cluster		
Add and subtract within 20. Note: Fluency involves a mixture of "just knowing" answers, knowing answers from patterns, and knowing answers from the use of strategies. The word fluently is used in the standards to	6. *Add and subtract within 20. a. Demonstrate fluency with addition an on. b. Demonstrate fluency with addition and ten. c. Demonstrate fluency with addition decomposing a number leading to a t Example: 13-4=13-3-1=10-1=9 d. Demonstrate fluency with addition and relationship between addition and sub Example: Knowing that $8+4=12$, one e. Demonstrate fluency with addition and equivalent but easier or known sums. Example: adding $6+7$ by creating the	subtraction facts with sums or differences to 10 by counting d subtraction facts with sums or differences to 10 by making and subtraction facts with sums or differences to 10 by n. subtraction facts with sums or differences to 10 by using the traction. knows $12-8=4$. subtraction facts with sums or differences to 10 by creating known equivalent $6+6+1=12+1=13$.
mean accurately,	Learning Objectives	Prior Knowledge Skills
efficiently flexibly.	M.1.6.1: Decompose numbers less than or equal to 10. M.1.6.2: Add and subtract within 5 . M.1.6.3: Count forward and backward from a given number. \square M.1.6.4: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.	Identify plus, minus, and equal signs. Match numerals to objects or drawings. Identify numerals 0 to 10 . Count 0 to 10. Understand key words in addition and subtraction word problems. Examples: all together, how many more, how many are left, in all. Represent numbers with objects or drawings. Separate sets with nine or fewer objects. Combine objects to form sets up to nine. Define addition as combining groups of objects. Define subtraction as separating groups of objects. Represent numbers with objects or drawings. Separate sets with nine or fewer objects.

\square

Combine objects to form sets up to nine.
Add and subtract numbers within 10 using objects, pictures, and fingers.
Pair "taking away" with subtraction.
\square Take a smaller set out of a larger set.
\square Pair putting together with adding.
Combine two sets to make a larger set up to twenty. Separate from a larger group to make 2 smaller groups. Count items in a set up to twenty.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Work with addition and subtraction equations.	7. *Explain that the equal sign means "the same as." Determine whether equations involving addition and subtraction are true or false. Example: determining which of the following equations are true and which are false: $6=6,7=8-1,5$ $+2=2+5,4+1=5+2$.	
	Learning Objectives	Prior Knowledge Skills
	M.1.7.1: Define true, false, and equal. M.1.7.2: Demonstrate equal using manipulatives or object drawings. M.1.7.3: Recall basic addition facts to ten. M.1.7.4: Recognize equation symbols in vertical and horizontal addition and subtraction problems. \square M.1.7.5: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.	Identify plus, minus, and equal signs. Match numerals to objects or drawings. Identify numerals 1 to 10. Count 0 to 10. Add and subtract numbers within 20 using objects, pictures, and fingers. Understand true, false, same (equal). Take a smaller set out of a larger set. Combine two sets to make a larger set up to twenty. Count items in a set up to twenty. Establish one-to-one correspondence between numbers and objects. Using counting, find one less than a number 2 through 20. Using counting, find one more than a number 1 through 20. Rote count to 20. Understand adding numbers up and down is the same as side by side.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Work with addition and subtraction equations.	8. Solve for the unknown whole number in various positions in an addition or subtraction equation, relating three whole numbers that would make it true. Example: determining the unknown number that makes the equation true in each of the equations $8+$? $=11,5=?-3$, and $6+6=$?	
	Learning Objectives	Prior Knowledge Skills
	\square M.1.8.1: Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$). M.1.8.2: Identify fact families as a relationship between addition and subtraction. M.1.8.3: Recall basic addition and subtraction facts to ten. M.1.8.4: Identify plus, minus, and equal signs. \square M.1.8.5: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.	Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. Count objects up to 10 . Write numerals from 0 to 10. Represent a given numeral 1 to 10 with objects or drawings. Count forward from a given number 1 to 10. Model joining sets of objects to total 10. Match numerals to objects or drawings. Identify numerals 1 to 10 . Count from 0 to 10. Add and subtract numbers within 20 using objects, pictures, and fingers. Understand true, false, same (equal). Take a smaller set out of a larger set. Combine two sets to make a larger set up to twenty. Count items in a set up to twenty. Establish one-to-one correspondence between numbers and objects. Understand one less than a number 2 through 20. Understand one more than a number 1 through 20. Understand positional terms with equal signs.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand simple patterns.	9. Reproduce, extend, and create patterns and sequences of numbers using a variety of materials.	
	Learning Objectives	Prior Knowledge Skills
	\square M.1.9.1: Duplicate and extend simple patterns by using concrete objects. M.1.9.2: Identify simple patterns. M.1.9.3: Mimic simple patterns. M.1.9.4: Match a simple object.	Define ones and tens. Match the number in the ones and tens position to a pictorial representation or manipulative of the value. Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. Count objects up to 10. Notice same/different and some/all. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Understand first and next.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Extend the counting sequence.	10. *Extend the number sequence from 0 to 120. a. Count forward and backward by ones, starting at any number less than 120. b. Read numerals from 0 to 120 . c. Write numerals from 0 to 120 . b. Represent a number of objects from 0 to 120 with a written numeral.	
	Learning Objectives	Prior Knowledge Skills
	M.1.10.1: Write numerals from 0 to 20. M.1.10.2: Recognize numerals to 100. M.1.10.3: Match the numeral to the number objects or picture of objects. M.1.10.4: Count to 100 by ones. M.1.10.5: Count to 20 by ones. M.1.10.6: Identify and name numerals 0-9. M.1.10.7: Trace numerals 0-9.	Count forward to 100 from a number over 50. Count forward to 100 from a number between 2 and 50 . Count forward to 50 from a given number. Count to 100 by ones. Mimic counting to 100 by ones. Count to 50 by ones. Mimic counting to 50 by ones. Mimic counting backwards from 5 to 0 by ones. Count to 50 by tens. Count to 20 by ones. Count to 10 by ones. Mimic counting by tens. Mimic counting by ones. Count to 50 and above. Mimic counting forward and backward by ones. Recognize numbers from 1-50. Become interested in how many objects she/he has. Continue to have an interest in counting. Understand the concept of size and amount. Pair the number of objects counted with "how many". Understand that the last number name tells the number of objects counted. $\square \quad$ Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).

*Critical Standard

| | |
| :--- | :--- | :--- |
| | |
| | |
| | |

\square Count objects one-by-one using only one number per object (up to ten objects).
\square Recognize that numbers have meaning.
\square Rote count to 50 .
\square Communicate number words.
\square Recognize before and after.
\square Trace numerals 1-20.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Understand place value.	11. *Explain that the two digits of a two-digit number represent amounts of tens and ones. a. Identify a bundle of ten ones as a "ten". b. Identify the numbers from 11 to 19 as composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. Identify the numbers $10,20,30,40,50,60,70,80,90$ as one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	
	Learning Objectives	Prior Knowledge Skills
	M.1.11.1: Match the number in the ones and tens position to a pictorial representation or manipulative of the value. M.1.11.2: Represent numbers with multiple models. Examples: models, base ten blocks, number lines, linking cubes, straw bundles. M.1.11.3: Count to 100 by tens. M.1.11.4: Count 10 objects. M.1.11.5: Count to 10 by ones. M.1.11.6: Name numerals 0 to 19.	Define ones and tens. Match the number in the ones and tens position to a pictorial representation or manipulative of the value. Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. Count objects up to 10 . Notice same/different and some/all. Recognize numbers from 1-50. Add one to a set of objects (up to 10 objects). Given small groups of objects, create larger groups by combining the small groups. Understand ten and 1 (ten 1 ' $s=10$). Put together two small groups of objects to create a larger group. Understand number words. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Rote count to 10.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Understand place value.	12. *Compare pairs of two-digit numbers based on the values of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and < and orally with the words "is greater than," "is equal to," and "is less than".	
	Learning Objectives	Prior Knowledge Skills
	M.1.12.1: Define greater than, less than and equal to. M.1.12.2: Demonstrate greater than, less than, and equal to using manipulatives, object drawings or numbers 0 to 10. M.1.12.3: Use comparison vocabulary. Examples: greater than, equal to, and less than. M.1.12.4: Recognize symbols for greater than, less than and equal to. \square M.1.12.5: Determine the value of the digits in the ones and tens place. M.1.12.6: Identify sets with more, less, or equal objects. M.1.12.7: Imitate creating sets of a given size.	Define ones and tens. Match the number in the ones and tens position to a pictorial representation or manipulative of the value. Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. Count objects up to 10 . Define greater than, less than, and equal to. Count to 20 by ones. Count objects up to ten. Understand amount words, such as more, less, and another. Begin to understand that parts of an object can make a whole. Become more interested in the concept of some and all. Be interested in who has more or less. Understand the concept of "less than." Mimic counting by ones. Recognize numbers from one to ten. Become interested in how many objects she/he has. Understand the concept of size and amount. Given a set number of objects one through ten, answer the question "How many?" Pair the number of objects counted with "How many?" Understand that the last number name tells the number of objects counted.

Operations with Numbers: Base Ten

Cluster
Use place value
understanding
and properties
of operations to
add and
subtract.

2019 Math COS Standard

13. *Add within 100, using concrete models or drawings and strategies based on place value.
a. Add a two-digit number and a one-digit number.
b. Add a two-digit number and a multiple of 10 .
c. Demonstrate that in adding two-digit numbers, tens are added to tens, ones are added to ones, and sometimes it is necessary to compose a ten.
d. Relate the strategy for adding a two-digit number and a one-digit number to a written method and explain the reasoning used.

Learning Objectives	Prior Knowledge Skills
\square	

\square M.1.13.1: Demonstrate regrouping, total sum, and solve using drawings and concrete models.
\square M.1.13.2: Model written method for recording horizontal addition problems.
\square M.1.13.3: Determine the value of the number in the ones and tens place.
$\square \quad$ M.1.13.4: Match the number in the ones, tens, and hundreds position to a pictorial representation or manipulative of the value.
\square M.1.13.5: Represent numbers with multiple models. Examples: models, base ten blocks, number lines, linking cubes, straw bundles.
\square M.1.13.6: Recall single-digit addition facts.

Prior Knowledge Skills
$\square \quad$ Define ones and tens.
$\square \quad$ Match the number in the ones and tens position to a pictorial representation or manipulative of the value.
\square Add numbers 0-9 to ten to create teen numbers using manipulatives or place value blocks.
$\square \quad$ Count objects up to 10 .
$\square \quad$ Recognize numbers from 0-10.
\square Become interested in how many objects she/he has.
\square Understand the concept of size and amount.
\square Given a set number of objects one through ten, answer the question "How many?".
$\square \quad$ Pair the number of objects counted with "how many?".
\square Understand that the last number name tells the number of objects counted.
$\square \quad$ Understand that 10 1's = 10 .
$\square \quad$ Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects.
$\square \quad$ Pair a group of objects with a number representing the total number of objects in the group.
$\square \quad$ Count objects one-by-one using only one number per object.
\square Recognize that numbers and numerals have meaning.
$\square \quad$ Rote count to 10 .
\square Communicate number words.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Use place value understanding and properties of operations to add and subtract.	14. *Given a two-digit number, mentally find 10 more or 10 less than the number without having to count, and explain the reasoning used.	
	Learning Objectives	Prior Knowledge Skills
	M.1.14.1: Define more and less. M.1.14.2: Demonstrate conceptual understanding of adding or subtracting 10 using concrete models. M.1.14.3: Count backward from 100 by tens. M.1.14.4: Count forward to 100 by tens. M.1.14.5: Count to 100 by ones.	Define ones and tens. Match the number in the ones and tens position to a pictorial representation or manipulative of the value. Add numbers 1-9 to ten to create teen numbers using manipulatives or place value blocks. Count objects up to 10 . Count to 50 and above. Mimic counting by ones. Recognize numbers from 1-50. Understand the concept of amount. Pair the number of objects counted with "how many?". Understand that the last number name tells the number of objects counted. Pair a group of objects with a number representing the total number of objects in the group (up to ten objects). Count objects one-by-one using only one number per object (up to ten objects). Recognize that numbers have meaning. Recognize numbers 1-10. Rote count to 50. Communicate number words. Add one to a set of objects (up to 10 objects).

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Use place value understanding and properties of operations to add and subtract.	15. *Subtract multiples of 10 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. Relate the strategy to a written method and explain the reasoning used.	
	Learning Objectives	Prior Knowledge Skills
	\square M.1.15.1: Demonstrate conceptual understanding of subtraction using concrete models. M.1.15.2: Model written method for recording problems involving subtraction of 10 from multiples of 10 . M.1.15.3: Count backward from 100 by tens. M.1.15.4: Count forward to 100 by tens. M 1.15.5: Mimic counting to 100 by tens.	Define subtraction as separating groups of objects. Represent numbers with objects or drawings. Separate sets with nine or fewer objects. Combine objects to form sets up to nine. Notice same/different and some/all. Subtract one from a set of objects (up to five objects). Given a group of objects (ten or less), divide the group into smaller groups in various ways. Take away objects from a large group to create two smaller groups. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Understand number words. Understand that 10 1's = 10 . Count forward to 50 by tens. Count backwards from 50 by tens. Mimic counting to 50 by tens.

Data Analysis

Cluster
Collect and
analyze data and
interpret results.

2019 Math COS Standard

16. Organize, represent, and interpret data with up to three categories.
a. Ask and answer questions about the total number of data points in organized data.
b. Summarize data on Venn diagrams, pictographs, and "yes-no" charts using real objects, symbolic representations, or pictorial representations.
c. Determine "how many" in each category using up to three categories of data.
d. Determine "how many more" or "how many less" are in one category than in another using data organized into two or three categories.

Learning Objectives

M.1.16.1: Define more and less.
\square M.1.16.2: Describe methods for representing data. Examples: pictographs, tally charts, bar graphs, and Venn Diagrams.
\square M.1.16.3: Locate information on data displays.
\square M.1.16.4: Classify objects into given categories; count the number of objects in each category and sort the categories by count.
\square M.1.16.5: Recognize different types of data displays.

Prior Knowledge Skills

\square Identify more and less when given two groups of objects.
$\square \quad$ Identify object attributes.
Examples: color, shape, size, texture, use.
$\square \quad$ Count objects up to ten.
$\square \quad$ Count to 10 by ones.
$\square \quad$ Understand a different type of graphs (ex. Venn diagram, bar graphs and pictograph).
$\square \quad$ Identify more and less when given two groups of objects of 10 or fewer.
\square Count objects up to 10 .
$\square \quad$ Count to 10 by ones.
\square Understand categories.
\square Identify object attributes. Examples: color, shape, size, texture, purpose.
$\square \quad$ Count to 1-20.
\square Mimic counting by ones.
$\square \quad$ Recognize numerals from 0-20.
$\square \quad$ Understand the concept of amount.
$\square \quad$ Pair the number of objects counted with "how many?".
$\square \quad$ Understand that the last number name tells the number of objects counted.
$\square \quad$ Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).

Measurement

Cluster	2019 Math COS Standard	
Describe and compare measurable attributes.	17. Order three objects by length; compare the lengths of two objects indirectly by using a third object.	
	Learning Objectives	Prior Knowledge Skills
	M.1.17.1: Define length. M.1.17.2: Use vocabulary related to length. Examples: longer, shorter, longest, shortest, taller. M.1.17.3: Identify objects by length. Examples: shortest pencil, tallest boy. M.1.17.4: Sort objects according to length. Example: sort short pencils from long pencils. M.1.17.5: Explore objects in relationship to length.	\square Use vocabulary related to length and weight. Example: longer, shorter, heavier, lighter. Identify objects by length and weight. Example: shortest pencil, heaviest rock. Sort objects according to measurable attributes. Define length and weight. Explore objects in relationship to length and weight. Define more, less, length. Use vocabulary related to length. Examples: longer, shorter. Identify objects by length. Examples: shortest pencil, heaviest rock. Sort objects according to measurable attributes. Use comparative language (longer/shorter, taller/shorter) for the attributes of objects related to length. Communicate long, tall, short. Recognize the length attributes of objects (long/short, tall/short). Recognize length as the measurement of something from end to end.

Measurement

Cluster	2019 Math COS Standard	
Describe and compare measurable attributes.	18. *Determine the length of an object using non-standard units with no gaps or overlaps, expressing the length of the object with a whole number.	
	Learning Objectives	Prior Knowledge Skills
	M.1.18.1: Describe gap and overlap. M.1.18.2: Describe what it means to measure using non-standard units. M.1.18.3: Model measuring using nonstandard units.	\square Use vocabulary related to length and weight. Example: longer, shorter, heavier, lighter. \square Identify objects by length and weight. Example: shortest pencil, heaviest rock. \square Sort objects according to measurable attributes. $\square \quad$ Define length and weight. \square Explore objects in relationship to length and weight. \square Define more, less, length, width, weight, and height. \square Use vocabulary related to length, width, weight, and height. Examples: longer, shorter, heavier, lighter, small, big. \square Identify objects by length, weight, and height. - Examples: shortest pencil, heaviest rock. \square Sort objects according to non-measurable attributes. Understanding concepts of small, big, heavy, light, tall, short. Understand concept of too much or too little.

Measurement

Cluster
Work with time

2019 Math COS Standard

and money.

19. Tell and write time to the hours and half hours using analog and digital clocks.

Learning Objectives

\square M.1.19.1: Describe the shorthand as the hour hand and the long hand as the minute hand on an analog clock.
\square M.1.19.2: Describe the first number as the hour, and the numbers after the colon as the minutes on a digital clock.
\square M.1.19.3: Count to 30 by fives.
\square M.1.19.4: Recognize numbers 1 to 12, and 30.
\square M.1.19.5: Trace numerals 1 to 12 , and 30 .
\square M.1.19.6: Associate digital and analog clocks with the measurement of time.

Prior Knowledge Skills

$\square \quad$ Identify numbers 1 to 12 .
\square Count by 5s.
\square Identify activities on a daily schedule that come before, next, after other activities.
\square Know before, next and after.Use a daily schedule containing times (in hours) and activities (in pictures).
\square Tell time in hours on an analog clock.
\square Demonstrate an understanding of yesterday, today, tomorrow, morning, afternoon, day, and night.
\square Recognize yesterday, today, tomorrow.
\square Recognize morning, afternoon, evening/night.
\square Recognize day and night.
$\square \quad$ Understand the concept of time.

Measurement

Cluster	2019 Math COS Standard	
Work with time and money.	20. Identify pennies and dimes by name and value.	
	Learning Objectives	Prior Knowledge Skills
	\square M.1.20.1: Identify that a penny has a value of one cent and demonstrate that 10 pennies have the same value as 1 dime. M.1.20.2: Recognize the value of 1 and 10. M.1.20.3: Sort pennies and dimes. M.1.20.4: Count 10 objects.	Count to 1-10. Understand the concept of amount. Pair the number of objects counted with "how many?". Understand that the last number name tells the number of objects counted. Pair a group of objects with a number representing the total number of objects in the group. Count objects one-by-one using only one number per object. Recognize that numbers have meaning. Recognize numerals 1-10. Communicate number words. Point to matching or similar objects. Identify a penny, dime by attributes (color, size). Recognize a penny as 1 cent. Differentiate coins from other objects.

Geometry

Cluster

Reason with shapes and their attributes.
Note: Students do not need to learn formal names such as "right rectangular prism."

2019 Math COS Standard

21. Build and draw shapes which have defining attributes.

a. Distinguish between defining attributes and non-defining attributes.

Examples: Triangles are closed and three-sided, which are defining attributes; color, orientation, and overall size are non-defining attributes.

Learning Objectives

Prior Knowledge Skills

\square M.1.21.1: Define side, angle, closed and open.
\square M.1.21.2: Describe attributes of shapes.
Examples: number of sides, number of angles.
\square M.1.21.3: Identify two-dimensional shapes.
\square M.1.21.4: Sort two-dimensional shapes.
\square M.1.21.5: Identify basic attributes. Examples: color, shape, size.Recognize attributes of shapes.
\square Identify cubes, cones, cylinders, and spheres.
\square Identify squares, circles, triangles, rectangles, and hexagons.
\square Identify shapes in the environment.
\square Trace shapes.
\square Make purpose marks such as lines and circles.
\square Notice same/different and some/all.
\square Begin to name and match sizes and shapes.
\square Enjoy playing with all kinds of objects.
\square Point to matching or similar objects.
\square Understand that words can label sameness and differences.
\square Sort objects based on shape or color.
\square Understand and point to a triangle, a circle, a square and rectangle.
$\square \quad$ Understand the concept of same shape and size.
\square Understand that some have more, and some have less.
$\square \quad$ Name and match primary colors.
\square Sort objects based on both color and shape.
\square Sort a variety of objects in a group that have one thing in common.
\square Recognize and sort familiar objects with the same color, shape, or size.

Geometry

Cluster

Reason with

 shapes and their attributes.Note: Students do not need to learn formal names such as "right rectangular prism."

2019 Math COS Standard

22. *Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape and compose new shapes from the composite shape.

Learning Objectives

\square M.1.22.1: Combine shapes to fill in the area of a given shape.
\square M.1.22.2: Replicate composite shapes.
\square M.1.22.3: Decompose pictures made of simple shapes.
\square M.1.22.4: Name shapes.
Examples: square, circle, triangle, rectangle, and hexagon.
\square M.1.22.5: Recognize shapes.

Prior Knowledge Skills

$\square \quad$ Combine shapes to fill the area of a given shape.
$\square \quad$ Decompose pictures made of simple shapes.
\square Match shapes.
$\square \quad$ Match pieces by color, image, or shape to complete a puzzle.
$\square \quad$ Define similar and different.
$\square \quad$ Use vocabulary related to two-dimensional shapes and threedimensional figures.
Examples: vertices (corners), faces (flat surfaces), edges, sides, angles.
$\square \quad$ Recognize vocabulary related to two-dimensional shapes and three-dimensional figures.
$\square \quad$ Identify two-dimensional shapes and three-dimensional figures.
\square Identify shapes.
$\square \quad$ Notice same/different and some/all.
$\square \quad$ Begin to name and match sizes and shapes.
$\square \quad$ Enjoy playing with all kinds of objects.
\square Point to matching or similar objects.
$\square \quad$ Understand that words can label sameness and differences.
$\square \quad$ Sort objects based on shape.
$\square \quad$ Recognize and sort familiar objects with the same shape or size.
$\square \quad$ Understand and point to a triangle, a circle, a square and rectangle.

Geometry

Cluster

Reason with

 shapes and their attributes.Note: Students do not need to learn formal names such as "right rectangular prism.".

2019 Math COS Standard

23. Partition circles and rectangles into two and four equal shares and describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of.
a. Describe "the whole" as two of or four of the shares of circles and rectangles partitioned into two or four equal shares.
b. Explain that decomposing into more equal shares creates smaller shares of circles and rectangles.

Learning Objectives
\square M.1.23.1: Define halves, fourths, quarters, whole, parts (shares) and equal.
\square M.1.23.2: Demonstrate sharing situations to show equal smaller shares.
\square M.1.23.3: Distinguish between equal and non-equal parts.
\square M.1.23.4: Decompose pictures made of simple shapes.
\square M.1.23.5: Identify squares, circles, triangles, and rectangles.

Prior Knowledge Skills

\square Combine shapes to fill the area of a given shape.
\square Decompose pictures made of simple shapes.
\square Match shapes.
\square Match pieces by color, image, or shape to complete a puzzle.
\square Define similar and different.
\square Use vocabulary related to two-dimensional shapes and threedimensional figures.
Examples: vertices (corners), faces (flat surfaces), edges, sides, angles.
\square Recognize vocabulary related to two-dimensional shapes and three-dimensional figures.
\square Identify two-dimensional shapes and three-dimensional figures.
\square Identify shapes.
\square Notice same/different and some/all.
$\square \quad$ Begin to name and match sizes and shapes.
\square Enjoy playing with all kinds of objects.
\square Point to matching or similar objects.
$\square \quad$ Understand that words can label sameness and differences.
\square Sort objects based on shape.
\square Recognize and sort familiar objects with the same shape or size.

Grade 2

Operations and Algebraic Thinking

Cluster

Represent and solve problems involving addition and subtraction. Note: Second grade problem types include adding to, taking from, putting together, taking apart, and comparing with unknowns in all positions.

2019 Math COS Standard

1. *Use addition and subtraction within 100 to solve one- and two-step word problems by using drawings and equations with a symbol for the unknown number to represent the problem.

Learning Objectives

\square M.2.1.1: Solve one-step addition and subtraction word problems with an unknown by using drawings and equations with a symbol for the unknown number to represent the problem.
\square M.2.1.2: Understand key words in addition and subtraction word problems. Examples: adding to, taking from, putting together, taking apart, sum, difference, all together, how many more, how many are left, in all.
\square M.2.1.3: Locate the unknown regardless of position.
Examples: start unknown, change unknown, and result unknown.
\square M.2.1.4: Apply signs +, -, = to actions of joining and separating sets.
\square M.2.1.5: Add and subtract within 50, e.g., by using objects or drawings to represent the problem.
\square M.2.1.6: Solve addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by

Prior Knowledge Skills

\square Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
\square Understand key words in addition and subtraction word problems. Examples: sum, difference, all together, how many more, how many are left, in all.
$\square \quad$ Define subtraction as separating groups of objects, taking from, or taking apart.
\square Define addition as combining groups of objects, adding to, or putting together.
\square Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.
\square Represent numbers with objects or drawings.Use objects to combine and separate groups.
Define how many, all together, and in all.Count to 20 by ones.
\square Demonstrate 1:1 correspondence.
\square Mimic counting objects in sequential order arranged in a line, circle, or array.
\square Count no more than 5 objects in a scattered configuration.
\square Mimic counting no more than 5 objects in a scattered configuration.
\square Count to 10 by ones.
\square Count in sequential order.
\square Mimic counting in sequential order.

	using objects or drawings to represent the problem. \square M.2.1.7: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out
	situations, verbal explanations, expressions, or equations.
\squareM.2.1.8: Represent numbers with objects or drawings.	

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard		
Add and subtract within 20.	2. *Fluently add and subtract within 20 using mental strategies such as counting on, making ten, decomposing a number leading to ten, using the relationship between addition and subtraction, and creating equivalent but easier or known sums. a. State automatically all sums of two one-digit numbers.		
	Learning Objectives		Prior Knowledge Skills
	M.2.2.1: Recall single - digit subtraction facts with minuends of 10 or less. M.2.2.2: Recall single - digit addition facts with sums up to 10. M.2.2.3: Apply addition and subtraction strategies. Examples: doubles, doubles plus one, doubles minus one. M.2.2.4: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.		Define addition and subtraction. Recognize properties of operations. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4$ $+1)$. Apply signs +, -, = to actions of joining and separating sets. Identify fact families to ten. Recognize the value of zero. Decompose numbers up to 5 using objects or drawings. Compose numbers up to 5 using objects or drawings. Count backward from 5. Count forward to 5. Write numerals from 0 to 10. Represent a given numeral 1 to 10 with objects or drawings. Count forward from a given number 1 to 10. Model joining sets of objects to total 10. Identify plus, minus, and equal signs. Match numerals to objects or drawings. Identify numerals 1 to 10 . Count 0 to 10. Add and subtract numbers within 20 using objects, pictures, and fingers.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Work with equal groups of objects to gain foundations for multiplication.	3. Use concrete objects to determine whether a group of up to 20 objects is even or odd. a. Write an equation to express an even number as a sum of two equal addends.	
	Learning Objectives	Prior Knowledge Skills
	M.2.3.1: Define pair, odd and even. M.2.3.2: Recall doubles addition facts with sums to 20. \square M.2.3.3: Apply signs + and $=$ to actions of joining sets. \square M.2.3.4: Model written method for composing equations. M.2.3.5: Skip count by 2 s .	Mimic skip counting by 2 s . Recognize numbers from 1-10. Become interested in how many objects she/he has. Understand the concept of size and amount. Given a set number of objects one through ten, answer the question "How many?". Pair the number of objects counted with "how many". Understand that the last number name tells the number of objects counted. Understand that 101 's = 10 . Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects. \square Pair a group of objects with a number representing the total number of objects in the group. \square Count objects one-by-one using only one number per object. \square Recognize that numbers and numerals have meaning. \square Rote count to 10 . \square Identify plus, minus, and equal signs. \square Match numerals to objects or drawings. \square Communicate number words. \square Recognize after. \square Recognize before.

Operations and Algebraic Thinking

Cluster	20	
Work with equal groups of objects to gain foundations for multiplication.	4. *Using concrete and pictorial representations and repeated addition, determine the total number of objects in a rectangular array with up to 5 rows and up to 5 columns. a. Write an equation to express the total number of objects in a rectangular array with up to 5 rows and up to 5 columns as a sum of equal addends.	
	Learning Objectives	Prior Knowledge Skills
	\square M.2.4.1: Distinguish between rows and columns. \square M.2.4.2: Use repeated addition to solve problems with multiple addends. \square M.2.4.3: Count forward in multiples from a given number. Examples: 3, 6, 9, 12; 4, 8, 12, 16. \square M.2.4.4: Recall doubles addition facts. \square M.2.4.5: Model written method for composing equations.	Give two sets of objects repeatedly from a larger group to represent multiples. Establish one-to-one correspondence between numbers and objects. Identify the = sign as equal. Pair same and equal. Know same when comparing numbers of objects. Recognize cue words for plus (add, plus, combine). Identify the + sign as plus. Use manipulatives and counting, recognize and represent the number 20 as two sets of ten. Use manipulatives and counting, recognize and represent the numbers 1 through 40. Establish one-to-one correspondence between numbers and objects. \square Rote count to forty.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard	
Understand simple patterns.	5. Reproduce, extend, create, and describe patterns and sequences using a variety of materials.	
	Learning Objectives	Prior Knowledge Skills
	M.2.5.1: Describe a pattern of colors, shapes, and/or numbers using a variety of materials. \square M.2.5.2: Create a pattern of colors, shapes, and/or numbers using a variety of materials. \square M.2.5.3: Extend a pattern of colors, shapes, and/or numbers. \square M.2.5.4: Mimic a simple pattern of colors, shapes, and/or numbers. \square M.2.5.5: Match a simple pattern of colors, shapes, and/or numbers.	Notice same/different and some/all. Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects. Understand first and next. Sort objects based on shape. Recognize and sort familiar objects with the same shape or size. Understand and point to a triangle, a circle, a square and rectangle. Understand the concept of same shape and size. Mimic a pattern presented.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Understand place value.	6. *Explain that the three digits of a three-digit number represent amounts of hundreds, tens, and ones. a. Explain the following three-digit numbers as special cases: 100 can be thought of as a bundle of ten tens, called a "hundred," and the numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	
	Learning Objectives	Prior Knowledge Skills
	M.2.6.1: Match the number in the ones, tens, and hundreds position to a pictorial representation or manipulative of the value. \square M.2.6.2: Represent numbers with multiple concrete models. Examples: concrete models - base ten blocks, number lines, linking cubes, straw bundles. M.2.6.3: Count to 1000 by hundreds. M.2.6.4: Count to 100 by tens. M.2.6.5: Create groups of 10 . M.2.6.6: Match the numeral in the ones and tens position to a pictorial representation or manipulative of the value. M.2.6.7: Match the numeral to the number of objects or picture of objects.	Notice same/different and some/all. Recognize numbers from 1-50. Add one to a set of objects (up to 10 objects). Given small groups of objects, create larger groups by combining the small groups. Understand ten and 1 (ten 1's=10). Put together two small groups of objects to create a larger group. Understand number words. Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects. Rote count to 50 by tens. Rote count to 500 by hundreds. Mimic counting to 100 by tens. Mimic counting to 900 by hundreds.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard	
Understand place value.	7. Count within 1000 by ones, fives, tens, and hundreds.	
	Learning Objectives	Prior Knowledge Skills
	M.2.7.1: Create a number pattern. M.2.7.2: Count backward from 100 by fives and tens. M.2.7.3: Count forward to 100 by fives and tens. M.2.7.4: Count to 100 by ones.	Add and subtract numbers 0-30 using numbers. Recognize numbers 0-30 as representing quantities. Add and subtract numbers 0-30 using pictures. Add and subtract numbers 0-30 using objects. Know mathematical symbols for add and subtract. Given a set of objects, find the total number of objects when a given set is removed. Given a set of objects, find the total number of objects when another set is combined with the original set. Given two sets of objects (less than ten objects each), count the total number of objects. Count objects to thirty. Establish one-to-one correspondence between numbers and objects. Identify the = sign as equal. Pair same and equal. Know same when comparing numbers of objects. Recognize cue words for minus (subtract, take away, separate). Identify the - sign as minus. Recognize cue words for plus (add, plus, combine). Identify the + sign as plus.

Operations with Numbers: Base Ten

Cluster
Understand place

value.
8. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.

Learning Objectives

M.2.8.1: Identify zero as a place holder in two-digit and three-digit numbers.M.2.8.2: Match the number in the ones, tens, and hundreds position to a pictorial representation or manipulative of the value.$\square \quad$ M.2.8.3: Identify the value of number in the ones, tens, and hundreds place.
\square M.2.8.4: Identify place value for ones, tens, and hundreds.
\square M.2.8.5: Read number names one through one hundred.M.2.8.6: Write numerals 1 to 100.M.2.8.7: Recognize number names one through twenty.
M.2.8.8: Trace numerals 0 to 100 .

Prior Knowledge Skills

\square Notice same/different and some/all.Recognize numbers from 1-100.
\square Add one to a set of objects (up to 10 objects).
\square Given small groups of objects, create larger groups by combining the small groups.
$\square \quad$ Understand ten and 1 (ten 1's =10).Understand that 10 (tens) $=100$.Put together two small groups of objects to create a larger group.Understand number words.Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.Rote count to 10.Understand the value of 0 (zero).Write numbers 1-100.Understand number words 1-100.
\square Trace numbers 1-100.

Operations with Numbers: Base Ten

Cluster

2019 Math COS Standard

Understand place value.
9. Compare two three-digit numbers based on the value of the hundreds, tens, and ones digits, recording the results of comparisons with the symbols $>,=$, and < and orally with the words "is greater than," "is equal to," and "is less than."

Learning Objectives

\square M.2.9.1: Define greater than, less than and equal to.
\square M.2.9.2: Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.
\square M.2.9.3: Arrange two - digit numbers in order from greatest to least or least to greatest.
\square M.2.9.4: Identify zero as a place holder in two - digit and three - digit numbers.
\square M.2.9.5: Model using >, $=$, and < symbols to record the results of comparisons of two two-digit numbers.
\square M.2.9.6: Select numbers on a number line that are more than, less than or equal to a specified number.
\square M.2.9.7: Match the words greater than, equal to and less than to the symbols $>,=$, and $<$.
\square M.2.9.8: Determine the value of the digits in the ones and tens place.
\square M.2.9.9: Identify sets with more, less, or equal objects.

Prior Knowledge Skills

\square Understand amount words, such as more, less, and another.
\square Become more interested in the concept of some and all.
\square Be interested in who has more or less.
\square Understand the concept of "less than" "more than".Mimic counting by ones.Recognize numbers from one to 100.
\square Become interested in how many objects she/he has.
\square Understand the concept of size and amount.
\square Given a set number of objects one through ten, answer the question "How many?".
\square Pair the number of objects counted with "how many".
\square Understand that the last number name tells the number of objects counted.
\square Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects.
\square Pair a group of objects with a number representing the total number of objects in the group.
\square Count objects one-by-one using only one number per object.

Operations with Numbers: Base Ten

Cluster

Use place value understanding and properties of operations to add and subtract.

2019 Math COS Standard

10. *Fluently add and subtract within 100 , using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.

Learning Objectives

\square M.2.10.1: Add within 100, including adding a two-digit number and a one-digit number and adding two two-digit numbers, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used.
\square M.2.10.2: Add within 20, demonstrating fluency for addition within 10. Use strategies such as counting on; making ten; decomposing a number leading to a ten; and creating equivalent but easier or known sums.
$\square \quad$ M.2.10.3: Determine the value of the number in the ones, tens, and hundreds place.
\square M.2.10.4: Model written method for recording horizontal and vertical addition problems.
\square M.2.10.5: Understand that the two digits of a two-digit number represent amounts of tens and ones.
\square M.2.10.6: Match the number in the ones and tens position to a pictorial representation or manipulative of the value.

Prior Knowledge Skills

$\square \quad$ Notice same/different and some/all.
\square Subtract one from a set of objects (up to 10 objects).
\square Given a group of objects (20 or less), divide the group into smaller groups in various ways.
$\square \quad$ Take away objects from a large group to create two smaller groups.
$\square \quad$ Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.Understand number words.Understand that 10 1's = 10.Count forward to 100 by tens.Count backwards from 100 by tens.
\square Mimic counting to 100 by tens.Recognize numbers from 1-100.Become interested in how many objects she/he has.Understand the concept of size and amount.
\square Given a set number of objects one through ten, answer the question "How many?".
$\square \quad$ Pair the number of objects counted with "how many".

Operations with Numbers: Base Ten

Cluster
Use place value
understanding
and properties
of operations to
add and
subtract.

2019 Math COS Standard

11. Use a variety of strategies to add up to four two-digit numbers.

Learning Objectives

M.2.11.1: Add within 100, including adding a two-digit number and a one-digit number and adding two two-digit numbers, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used.
\square M.2.11.2: Add within 20, demonstrating fluency for addition within 10. Use strategies such as counting on; making ten; decomposing a number leading to a ten; and creating equivalent but easier or known sums.
\square M.2.11.3: Determine the value of the number in the ones, tens and hundreds place.
\square M.2.11.4: Model written method for recording horizontal and vertical addition problems.
\square M.2.11.5: Understand that the two digits of a two-digit number represent amounts of tens and ones.
\square M.2.11.6: Match the number in the ones and tens position to a pictorial representation or manipulative of the value.

Prior Knowledge Skills

Subtract one from a set of objects (up to 10 objects).Given a group of objects (20 or less), divide the group into smaller groups in various ways.
\square Take away objects from a large group to create two smaller groups.
\square Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.Understand number words.Understand that 10 1's = 10.Count backwards from 100 by tens.
Mimic counting to 100 by tens.Recognize numbers from 1-100.Understand the concept of size and amount.Understand that the last number name tells the number of objects counted.
\square Understand that 10 1's = 10.
\square Understand that 10 (tens) $=100$.
\square Pair a group of objects with a number representing the total number of objects in the group.

Operations with Numbers: Base Ten

Cluster

Use place value understanding and properties of operations to add and subtract.

2019 Math COS Standard

12. *Add and subtract within 1000 using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method.
a. Explain that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.

Learning Objectives

\square M.2.12.1: Define regrouping, total, sum, difference and solve.
\square M.2.12.2: Add and subtract two two-digit numbers with and without regrouping.
\square M.2.12.3: Determine the value of the number in the ones, tens, hundreds, and thousands place using concrete models or drawings and strategies based on place value.
\square M.2.12.4: Match the number in the ones, tens, hundreds, and thousands position to a pictorial representation or manipulative of the value.
\square M.2.12.5: Model written method for recording horizontal and vertical addition and subtraction problems.
\square M.2.12.6: Represent two- and three-digit numbers with multiple models. Examples: models - base ten blocks, number lines, linking cubes, straw bundles.
\square M.2.12.7: Recall single-digit addition and subtraction facts.

Prior Knowledge Skills

- Notice same/different and some/all
\square Recognize numerals from 1-50.
\square Add one to a set of objects (up to 10 objects).
\square Given small groups of objects, create larger groups by combining the small groups.
$\square \quad$ Understand ten and 1 (ten 1's =10).
\square Put together two small groups of objects to create a larger group.
\square Subtract one from a set of objects (up to 10 objects).
\square Given a group of objects (20 or less), divide the group into smaller groups in various ways.
\square Take away objects from a large group to create two smaller groups.
\square Understand number words.
\square Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.
\square Rote count to 10 .
\square Understand amount words, such as more, less, and another.Begin to understand that parts of an object can make a whole.

| | \squareM.2.12.8: Add and subtract within 20, e.g.,
 by using objects or drawings to represent
 the problem. | |
| :--- | :--- | :--- | :--- |

Operations with Numbers: Base Ten

Cluster

2019 Math COS Standard
Use place value understanding and properties of operations to add and subtract.

Learning Objectives

M. 2.13.1: Demonstrate conceptual using concrete models.
13. Mentally add and subtract 10 or 100 to a given number between 100 and 900 . understanding of adding or subtracting 10
\square M.2.13.2: Recognize the place value of ones, tens, and hundreds.
\square M.2.13.3: Count forward and backward by 100.
\square M.2.13.4: Count forward and backward by 10.
\square M.2.13.5: Recall single-digit subtraction facts.
$\square M$.2.13.6: Recall single-digit addition facts.

Prior Knowledge Skills

Recognize numerals from 1-50.Become interested in how many objects she/he has.Understand the concept of size and amount.Given a set number of objects one through ten, answer the question "How many?".\square Pair the number of objects counted with "how many?".
\square Understand that the last number name tells the number of objects counted.
\square Understand that 10 1's = 10 .
$\square \quad$ Establish one-to-one correspondence between numbers and objects when given a picture, a drawing, or objects.
$\square \quad$ Pair a group of objects with a number representing the total
number of objects in the group.
$\square \quad$ Count objects one-by-one using only one number per object.Recognize that numbers and numerals have meaning.Mimic counting forward and backward by 100.Mimic counting forward and backward by 10.Communicate number words.Recognize after.Recognize before.Understand one less than a number 2 through 20.
\square Understand one more than a number 1 through 20.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Use place value understanding and properties of operations to add and subtract.
14. Explain why addition and subtraction strategies work, using place value and the properties of operations.
Note: Explanations may be supported by drawings or objects.

Learning Objectives	Prior Knowledge Skills

\square M.2.14.1: Explain addition and subtraction
\square Match numerals to objects or drawings.
problems using concrete objects, pictures.
\square M.2.14.2: Use multiple strategies to add and subtract including counting on, counting back and using doubles.
\square M.2.14.3: Recall single-digit subtraction facts.
\square M.2.14.4: Recall single-digit addition facts.
\square M.2.14.5: Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.
\square Identify numerals 1 to 10 .
\square Count from 0 to 10 .
\square Add and subtract numbers within 20 using objects, pictures, and fingers.
$\square \quad$ Take a smaller set out of a larger set.
\square Combine two sets to make a larger set up to twenty.
\square Count items in a set up to twenty.
\square Establish one-to-one correspondence between numbers and objects.
\square Understand one less than a number 2 through 20.
\square Understand one more than a number 1 through 20.
\square Understand positional terms with equal signs.

Data Analysis

Cluster
Collect and
analyze data and
interpret results.

2019 Math COS Standard

15. Measure lengths of several objects to the nearest whole unit.
a. Create a line plot where the horizontal scale is marked off in whole-number units to show the lengths of several measured objects.

Learning Objectives
 Prior Knowledge Skills

M.2.15.1: Define length and line plot.
\square M.2.15.2: Use vocabulary related to comparison of length.
Examples: longer, shorter, longest, shortest, taller.
\square M.2.15.3: Demonstrate rounding up to the nearest whole unit on measurement tools.
\square M.2.15.4: Demonstrate measuring length using standard units.
\square M.2.15.5: Describe a line plot.
\square M.2.15.6: Model measuring length using standard units.
\square M.2.15.7: Identify objects by length.
\square M.2.15.8: Sort objects according to length.
\square M.2.15.9: Explore objects in relationship to length.
\square Define more, less, length, width, weight, and height.
\square Identify objects by length and height. Examples: shortest pencil, heaviest rock.
\square Identify objects by length. Examples: shortest pencil, heaviest rock.Sort objects according to measurable attributes.Sort objects according to non-measurable attributes.
\square Use comparative language (longer/shorter, taller/shorter) for the attributes of objects related to length.
\square Communicate long, tall, short.Recognize the length attributes of objects (long/short, tall/short).Recognize length as the measurement of something from end to end.
\square Understanding concepts of small, big, tall, short.
\square Use manipulatives and counting.
\square Establish one-to-one correspondence between numbers and objects.
\square Write numerals 0-20.
\square Mimic marking an x on number line.

Data Analysis

Cluster

Collect and analyze data and interpret results.

2019 Math COS Standard

16. *Create a picture graph and bar graph to represent data with up to four categories.
a. Using information presented in a bar graph, solve simple "put-together," "take-apart," and "compare" problems.
b. Using Venn diagrams, pictographs, and "yes-no" charts, analyze data to predict an outcome.

Learning Objectives

\square M.2.16.1: Use addition and subtraction within 20 to solve addition and subtraction word problems with an unknown number.
\square M.2.16.2: Describe picture graph and bar graph.
\square M.2.16.3: Demonstrate conceptual understanding of adding or subtracting using a variety of materials.
\square M.2.16.4: Use vocabulary related to comparing data. Examples: more than, less than, most, least, equal.
\square M.2.16.5: Recognize attributes of data displays.
\square M.2.16.6: Locate information on data displays.
\square M.2.16.7: Classify objects into given categories.
\square M.2.16.8: Sort the categories by count.
\square M.2.16.9: Recognize different types of data displays.
\square M.2.16.10: Count objects up to 50 .

Prior Knowledge Skills

Understand different types of graphs (ex. Venn diagram, bar graphs and pictograph).
$\square \quad$ Identify more and less when given two groups of objects of 10 or fewer.
\square Understand that words can label sameness and differences.
\square Understand categories.
\square Identify object attributes. Examples: color, shape, size, texture, purpose.
\square Sort objects based on both color and shape.
\square Sort a variety of objects in a group that have one thing in common.
\square Recognize numerals from 0-20.
\square Understand the concept of amount.
\square Understand that the last number name tells the number of objects counted.
\square Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).
\square Recognize numerals 0-10.
\square Add one to a set of objects (up to 10 objects).
$\square \quad$ Put together two small groups of objects to create a larger group to represent adding.

Measurement

Cluster

Measure and estimate lengths in standard units.

2019 Math COS Standard

17. Measure the length of an object by selecting and using standard units of measurement shown on rulers, yardsticks, meter sticks, or measuring tapes.

Learning Objectives

M.2.17.1: Identify units of measurement for length.
Examples: inches, feet, yard; centimeter, meters.
\square M.2.17.2: Demonstrate how to use measurement tools. Example: avoiding gaps and overlaps.
\square M.2.17.3: Identify measurement tools.
\square M.2.17.4: Model measuring using nonstandard units.
\square M.2.17.5: Order three objects by length.
\square M.2.17.6: Compare the lengths of two objects indirectly by using a third object.
\square M.2.17.7: Describe measurable attributes of objects such as length or weight.

Prior Knowledge Skills

\square Define more, less, length, width, weight, and height.
\square Identify objects by length and height. - Examples: shortest pencil, heaviest rock.
\square Identify objects by length. Examples: shortest pencil, heaviest rock.Sort objects according to measurable attributes.
\square Sort objects according to non-measurable attributes.Use comparative language (longer/shorter, taller/shorter) for the attributes of objects related to length.
\square Communicate long, tall, short.Recognize the length attributes of objects (long/short, tall/short).Recognize length as the measurement of something from end to end.
$\square \quad$ Understanding concepts of small, big, tall, short.

M		
Cluster	2019 Math COS Standard	
Measure and estimate lengths in standard units.	18. Measure objects with two different units and describe how the two measurements relate to each other and the size of the unit chosen.	
	Learning Objectives	Prior Knowledge Skills
	M.2.18.1: Identify units of measurement for length. Examples: inches, feet, yard; centimeter, meters. M.2.18.2: Demonstrate how to use measurement tools. Example: avoiding gaps and overlaps. \square M.2.18.3: Identify units of measure on measurement tools. \square M.2.18.4: Use vocabulary related to comparison of length. Examples: longer, shorter, longest, shortest, taller. M.2.18.5: Identify numerals one to 50 .	Define more, less, length, width, weight, and height. Use vocabulary related to length, width, weight, and height. Examples: longer, shorter, small, big. Identify objects by length and height. Examples: shortest pencil, heaviest rock. Identify objects by length. Examples: shortest pencil, heaviest rock. Sort objects according to measurable attributes. Sort objects according to non-measurable attributes. Use comparative language (longer/shorter, taller/shorter) for the attributes of objects related to length. Communicate long, tall, short. Recognize the length attributes of objects (long/short, tall/short). Recognize length as the measurement of something from end to end. Understanding concepts of small, big, tall, short. Identify numerals 0-25.

Measurement		
Cluster	2019 Math COS Standard	
Measure and estimate lengths in standard units.	19. *Estimate lengths using the following standard units of measurement: inches, feet, centimeters, and meters.	
	Learning Objectives	Prior Knowledge Skills
	M.2.19.1: Define estimate. M.2.19.2: Measure objects using standard and non-standard units. \square M.2.19.3: Identify units of measure on measurement tools. \square M.2.19.4: Model measuring using nonstandard units. \square M.2.19.5: Use vocabulary related to comparison of length. Examples: longer, shorter, longest, shortest, and taller.	Define more, less, length, width, weight, and height. Use vocabulary related to length, width, weight, and height. Examples: longer, shorter, small, big. Identify objects by length and height. Examples: shortest pencil, heaviest rock. Identify objects by length. Examples: shortest pencil, heaviest rock. Use comparative language (longer/shorter, taller/shorter) for the attributes of objects related to length. Communicate long, tall, short. Understanding concepts of small, big, tall, short.

Measurement		
Cluster	2019 Math COS Standard	
Measure and estimate lengths in standard units.	20. Measure to determine how much longer one object is than another, expressing the length difference of the two objects using standard units of length.	
	Learning Objectives	Prior Knowledge Skills
	M.2.20.1: Measure objects using standard units. M.2.20.2: Record lengths with appropriate units. M.2.20.3: Use subtraction within 20 to solve problems. M.2.20.4: Compare length using nonstandard units to determine which is longer. \square M.2.20.5: Use vocabulary related to comparison of length. Examples: longer, shorter, longest, shortest, and taller.	Define more, less, length. Use vocabulary related to length. Examples: longer, shorter. Identify objects by length. Examples: shortest pencil, heaviest rock. Sort objects according to measurable attributes. Use comparative language (longer/shorter, taller/shorter) for the attributes of objects related to length. Communicate long, tall, short. Recognize the length attributes of objects (long/short, tall/short). Recognize length as the measurement of something from end to end. Understand different forms of measurement (inches, centimeters). Understand ruler. Match numerals to objects or drawings. Identify numerals 0 to 20. Count from 0 to 20. Add and subtract numbers within 20 using objects, pictures, and fingers. Take a smaller set out of a larger set. Combine two sets to make a larger set up to twenty. Count items in a set up to twenty. Establish one-to-one correspondence between numbers and objects. Understand one less than a number 2 through 20. Understand one more than a number 1 through 20.

Measurement

Cluster
Relate addition and subtraction to length.

2019 Math COS Standard

21. *Use addition and subtraction within 100 to solve word problems involving same units of length, representing the problem with drawings (such as drawings of rulers) and/or equations with a symbol for the unknown number.

Learning Objectives

\square M.2.21.1: Solve one-step addition and subtraction word problems with an unknown by using drawings and equations with a symbol for the unknown number to represent the problem.
Examples: question mark, blank, box, or etter.
\square M.2.21.2: Demonstrate the understanding of terms in addition and subtraction word problems involving length.
Examples: adding to, taking from, putting together, taking apart, sum, difference, all together, how many more, how many are left, in all, inches, feet, yards, longer, shorter, nearer, farther, closer.
\square M.2.21.3: Locate the unknown number regardless of position.
\square M.2.21.4: Add and subtract within 50, e.g. by using objects or drawings to represent the problem.
\square M.2.21.5: Model writing equations from word problems.
\square M.2.21.6: Apply signs +, -, = to actions of joining and separating sets.
\square M.2.21.7: Identify units of measurement for length.

Prior Knowledge Skills

\square Establish one-to-one correspondence between numbers and objects.Point to matching or similar objects.Add and subtract numbers within 20 using objects, pictures, and fingers.
\square Pair "taking away" with subtraction.Take a smaller set out of a larger set.
\square Pair putting together with adding.Combine two sets to make a larger set up to twenty.Count items in a set up to twenty.Using counting, find one less than a number 2 through 20.Using counting, find one more than a number 1 through 20.
\square Understand + , -, = and what they represent.
\square Define more, less, length, width, weight, and height.
\square Use vocabulary related to length, width, weight, and height.

	Examples: inches, feet, yard; centimeter, meters.	

Measurement		
Cluster	2019 Math COS Standard	
Relate addition and subtraction	22. *Create a number line diagram using whole numbers and use it to represent whole number sums and differences within 100.	
to	Learning Objectives	Prior Knowledge Skills
	M.2.22.1: Recognize that each successive number name refers to a quantity that is one larger; and each previous number name refers to a quantity that is one less. \square M.2.22.2: Use a number line to add and subtract within 10. \square M.2.22.3: Write numerals 0 to 100 . \square M.2.22.4: Trace numerals 0 to 100.	Represent addition and subtraction with objects, pictures, fingers, or sounds within twenty. Understand addition as putting together and subtraction as taking from. Establish one-to-one correspondence between numbers and objects. Rote count to 25 . Notice same/different and some/all. Point to matching or similar objects. Add and subtract numbers within 20 using objects, pictures, and fingers. Pair "taking away" with subtraction. Take a smaller set out of a larger set. Pair putting together with adding. Combine two sets to make a larger set up to twenty. Count items in a set up to twenty. Using counting, find one less than a number 2 through 20. Using counting, find one more than a number 1 through 20. Understand,,$+-=$ and what they represent. Count forward to 50 by tens. Count backwards from 50 by tens. Mimic counting to 50 by tens. Trace numerals 0-50. Mimic creating a number line with equally spaced points from 0 to 20.

Measurement

Cluster

Work with time and money.

2019 Math COS Standard

23. Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.
a. Express an understanding of common terms such as, but not limited to, quarter past, half past, and quarter to.

Learning Objectives

\square M.2.23.1: Tell and write time in hours and

Prior Knowledge Skills

 half-hours using analog and digital clocks.\square M.2.23.2: Recognize vocabulary terms related to time measurements.
Examples: minute, hour, half hour, o'clock, morning, evening, a.m., p.m
\square M.2.23.3: Illustrate time to hour and half hour.
Example: Given the time 3:00, illustrate long hand and shorthand positions on a clock.
\square M.2.23.4: Identify the shorthand as the hour hand, and the long hand as the minute hand on an analog clock.
\square M.2.23.5: Identify the first number as the hour, and the numbers after the colon as the minutes on a digital clock.
\square M.2.23.6: Write numerals 0 to 59 .
\square M.2.23.7: Recognize numerals 0 to 59 .
\square M.2.23.8: Count to 60 by fives.
\square M.2.23.9: Distinguish between analog and digital clocks.
\square Identify numerals 0 to 12 .
\square Count by 5s.
\square Identify activities on a daily schedule that come before, next, after other activities.
\square Know before, next and after
\square Use a daily schedule containing times (in hours) and activities (in pictures).
\square Understand differences with analog and digital clocks.
\square Understand hour is the same as 60 minutes.
\square Know the hours, minutes, seconds on a clock.
\square Tell time in hours on an analog clock.
\square Demonstrate an understanding of yesterday, today, tomorrow, morning, afternoon, day, and night.
\square Recognize yesterday, today, tomorrow
\square Recognize morning, afternoon, evening/night.
\square Recognize day and night.
\square Understand the concept of time.

Measurement

Cluster

Work with time and money.

2019 Math COS Standard

24. Solve problems with money.
a. Identify nickels and quarters by name and value.
b. Find the value of a collection of quarters, dimes, nickels, and pennies.
c. Solve word problems by adding and subtracting within one dollar, using the $\$$ and $\%$ symbols appropriately (not including decimal notation). Example: $24 \grave{c}+26 ¢=50 ¢$.

Learning Objectives

Prior Knowledge Skills
\square M.2.24.1: Determine the monetary value of a set of like and unlike bills.
\square M.2.24.2: Determine the monetary value of a set of like and unlike coins.
\square M.2.24.3: Apply addition and subtraction strategies.
\square M.2.24.4: Understand key words in addition and subtraction word problems involving money.
Examples: adding to, taking from, putting together, taking apart, sum, difference, all together, how much more, how much is left, in all, cents, dollar, change, paid, total.
\square M.2.24.5: Count forward from a given number by ones, fives, tens, and twentyfives.
\square M.2.24.6: Identify coins and bills and their value.
\square M.2.24.7: Identify symbols for dollar (\$), cent ($¢$).
\square M.2.24.8: Identify coins by name including penny, nickel, dime, and quarter.
\square M.2.24.9: Sort pennies, nickels, dimes, and quarters.
\square Count to 1-25.
\square Understand the concept of amount.
\square Pair the number of objects counted with "how many?".
\square Understand that the last number name tells the number of objects counted.
\square Pair a group of objects with a number representing the total number of objects in the group.
\square Count objects one-by-one using only one number per object.
\square Recognize that numbers have meaning.
\square Recognize numerals 1-25.
\square Communicate number words.
\square Point to matching or similar objects.
$\square \quad$ Identify a penny, dime, nickels, quarters by attributes (color, size).

| | \squareM.2.24.10: Count 10 objects.
 Examples: pennies and dollar bills. | |
| :--- | :--- | :--- | :--- |

Geometry

Cluster
Reason with shapes and their attributes.

2019 Math COS Standard

25. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.
a. Recognize and draw shapes having specified attributes.

Examples: a given number of angles or a given number of equal faces.

Learning Objectives

Prior Knowledge Skills

\square M.2.25.1: Define side, angle, face, closed, and open.
\square M.2.25.2: Use vocabulary related to shape attributes.
Examples: sides, angles, face, closed, open.
\square M.2.25.3: Trace shapes.
\square M.2.25.4: Sort triangles, quadrilaterals, pentagons, hexagons, and cubes.
\square M.2.25.5: Explore triangles, quadrilaterals, pentagons, hexagons, and cubes.
\square Notice same/different and some/all.
\square Begin to name and match sizes and shapes.
\square Enjoy playing with all kinds of objects.
\square Point to matching or similar objects.
\square Understand that words can label sameness and differences.
\square Sort objects based on shape or color.
\square Understand and point to a triangle, a circle, a square and rectangle.
\square Understand the concept of same shape and size.
\square Understand that some have more, and some have less.
\square Sort objects based on shape.
\square Sort a variety of objects in a group that have one thing in common.
\square Recognize and sort familiar objects with the same color, shape, or size
\square Understand and point to a triangle, a circle, a square and rectangle.
\square Understand a line and a point, angle.
\square Count 1-6 for sides.
\square Understand the different shapes.
\square Draw basic shapes.

Geometry

Cluster
Reason with shapes and their attributes.

2019 Math COS Standard

26. Partition a rectangle into rows and columns of same-size squares, and count to find the total number of squares.

Learning Objectives Prior Knowledge Skills

M.2.26.1: Define rows, columns, and total.
\square M.2.26.2: Identify rectangle.
\square M.2.26.3: Count to 20 by ones.
\square M.2.26.4: Trace partitions in a rectangle.Notice same/different and some/all.Begin to name and match sizes and shapes.Enjoy playing with all kinds of objects.Point to matching or similar objects.Understand that words can label sameness and differences.Sort objects based on shape or color.Understand and point to a square or rectangle.Understand the concept of same shape and size.Understand that some have more, and some have less.Sort objects based on shape.Sort a variety of objects in a group that have one thing in common.Recognize and sort familiar objects with the same color, shape, or size.Understand and point to a square and rectangle.Understand a line and a point, row, column.Identify more and less when given two groups of objects of 10 or fewer.
$\square \quad$ Count objects up to 25 .Count to 10 by ones.Understand categories.Count to 0-25.
\square Mimic counting by ones.Recognize numerals 0-20.Understand the concept of amount.Pair the number of objects counted with "how many?".
\square Understand that the last number name tells the number of objects counted.
路
\square Pair a group of objects with a number representing the total number of objects in the group (up to ten objects).
\square Count objects one-by-one using only one number per object (up to ten objects).Recognize that numbers have meaningRecognize numerals 0-10.Add one to a set of objects (up to 10 objects).Put together two small groups of objects to create a larger group to represent adding.Separate smaller groups from a larger group of objects to represent subtraction.Establish one-to-one correspondence between numbers and objects when given a picture a drawing or objects.Understand number words.Rote counting to 20.Sort objects based on both color and shape.Sort a variety of objects in a group that have one thing in common.Understand that words can label sameness and differences.
Sort objects based on shape or color.

Geometry

Reason with

 shapes and their attributes.
2019 Math COS Standard

27. *Partition circles and rectangles into two, three, or four equal shares. Describe the shares using such terms as halves, thirds, half of, or a third of, and describe the whole as two halves, three thirds, or four fourths.
a. Explain that equal shares of identical wholes need not have the same shape.

Learning Objectives

Prior Knowledge Skills

\square M.2.27.1: Define halves, thirds, fourths, quarters, whole, parts (shares) and equal.
$\square \quad$ Notice same/different and some/all.
\square M.2.27.2: Distinguish between equal and non-equal parts.
\square M.2.27.3: Model partitioning circles and rectangles.
$\square \quad$ M.2.27.4: Decompose pictures made of simple shapes.
\square M.2.27.5: Identify squares, circles, triangles, and rectangles.
\square M.2.27.6: Explore shapes or figures that can be decomposed into smaller equal parts.
\square Begin to name and match sizes and shapes.
\square Enjoy playing with all kinds of objects.
$\square \quad$ Point to matching or similar objects.
$\square \quad$ Understand that words can label same and differences.
\square Sort objects based on shape.
$\square \quad$ Recognize and sort familiar objects with the same shape or size.
\square Understand and point to a triangle, a circle, a square and rectangle.
$\square \quad$ Understand the concept of same shape and size.
\square Interact with shapes.
$\square \quad$ Understand a whole and half from one object.
$\square \quad$ Understand grouping of objects also equal a whole.
\square Separate whole group into 2 equal groups to show halves.
\square Separate 2 halves into 4 equal groups to show fourths (quarters).
$\square \quad$ Understand the term of equal.
$\square \quad$ Understand that separating shapes can create other shapes.

Grade 3

Operations and Algebraic Thinking

Cluster
 2019 Math COS Standard

Represent and solve problems involving multiplication and division.

1. *Illustrate the product of two whole numbers as equal groups by identifying the number of groups and the number in each group and represent as a written expression.

Learning Objectives

\square M.3.1.1: Identify and define the parts of a multiplication problem including factors, multiplier, multiplicand, and product.
\square M.3.1.2: Use multiplication to find the total number of objects arranged in rectangular arrays based on columns and rows.
\square M.3.1.3: Write an equation to express the product of the multipliers (factors).
\square M.3.1.4: Relate multiplication to repeated addition and skip counting.
\square M.3.1.5: Apply concepts of multiplication through the use of manipulatives, number stories, skip counting arrays, area of a rectangle, or repeated addition.
\square M.3.1.6: Apply basic multiplication facts through 9×9 using manipulatives, solving problems, and writing number stories.
\square M.3.1.7: Solve addition problems with multiple addends.
\square M.3.1.8: Represent addition using manipulatives.

Prior Knowledge Skills

\square Recall doubles addition facts.Use repeated addition to solve problems with multiple addends.Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
\square Understand key words in addition and subtraction word problems. Examples: sum, difference, all together, how many more, how many are left, in all.
\square Define subtraction as separating groups of objects, taking from, or taking apart.
\square Define addition as combining groups of objects, adding to, or putting together.
\square Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.
\square Represent numbers with objects or drawings.
\square Use objects to combine and separate groups.

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Represent and solve problems involving multiplication and division.	2. *Illustrate and interpret the quotient of two whole numbers as the number of objects in each group or the number of groups when the whole is partitioned into equal shares.	
	Learning Objectives	Prior Knowledge Skills
	\square M.3.2.1: Define the parts of a division problem including divisor, dividend, and quotient. M.3.2.2: Write a division equation. M.3.2.3: Apply the signs \div and $=$ to the action of separating sets. M.3.2.4: Recognize division as either repeated subtraction, parts of a set, parts of a whole, or the inverse of multiplication. M.3.2.5: Model grouping with basic division facts partitioned equally (e.g., 8/2). M.3.2.6: Apply properties of operations as strategies to subtract. M.3.2.7: Subtract within 20. M.3.2.8: Represent equal groups using manipulatives.	Putting a larger item into smaller groups. Model writing equations from word problems. Apply signs,,$+-=$ to actions of joining and separating sets. Use of base 10 blocks to demonstrate making equal sets of a larger whole.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard

Represent and solve problems involving multiplication and division.

2019 Math COS Standard

3. *Solve word situations using multiplication and division within 100 involving equal groups, arrays, and measurement quantities; represent the situation using models, drawings, and equations with a symbol for the unknown number.

Learning Objectives

\square M.3.3.1: Demonstrate computational understanding of multiplication and division by solving authentic problems with multiple representations using drawings, words, and/or numbers.
$\square \quad$ M.3.3.2: Identify key vocabulary words to solve multiplication and division word problems.
\square M.3.3.3: Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
\square M.3.3.4: Recall basic multiplication facts.
\square M.3.3.5: Add and subtract within 20.
\square M.3.3.6: Represent repeated addition, subtraction, and equal groups using manipulatives.

Prior Knowledge Skills

$\square \quad$ Define pair, odd and even.Recall doubles addition facts with sums to 20.
Apply signs + and $=$ to actions of joining sets.Model written method for composing equations.Skip count by 2s.Represent addition and subtraction with objects, pictures, fingers, or sounds within twenty.
$\square \quad$ Understand addition as putting together and subtraction as taking from.
$\square \quad$ Establish one-to-one correspondence between numbers and objects.
$\square \quad$ Rote count to 20 .Notice same/different and some/all.Establish one-to-one correspondence between numbers and objects.
$\square \quad$ Point to matching or similar objects.

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Represent and solve problems involving multiplication and division.	4. Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	
	Learning Objectives	Prior Knowledge Skills
	M.3.4.1: Use arrays to show equal groups in multiplication and division. M.3.4.2: Recall basic multiplication facts. M.3.4.3: Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. M.3.4.4: Represent repeated addition, repeated subtraction, and equal groups using manipulatives.	Distinguish between rows and columns. Use repeated addition to solve problems with multiple addends Pulled up from first grade. Represent addition and subtraction with objects, pictures, fingers, or sounds within twenty. Understand addition as putting together and subtraction as taking from. Establish one-to-one correspondence between numbers and objects. Rote count to 20. Notice same/different and some/all. Establish one-to-one correspondence between numbers and objects. \square Point to matching or similar objects.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard

Understand properties of multiplication and the relationship between multiplication and division.
Note: Students
need not use
formal terms for these properties.
5. *Develop and apply properties of operations as strategies to multiply and divide.

Learning Objectives

\square M.3.5.1: Define properties of operations.
\square M.3.5.2: Apply basic multiplication facts.
\square M.3.5.3: Apply properties of operations as strategies to add and subtract.
\square M.3.5.4: Count to answer "how many?" questions about as many as 30 things arranged in a rectangular array.

Prior Knowledge Skills

\square Match the numeral in the ones and tens position to a pictorial representation or manipulative of the value.
\square Count forward in multiples from a given number.
\square Represent addition and subtraction with objects, fingers, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.Represent numbers with objects or drawings.

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Understand properties of	6. Use the relationship between multiplication and division to represent division as an equation with an unknown factor.	
multiplication and	Learning Objectives	Prior Knowledge Skills
the relationship between multiplication and division.	M.3.6.1: Apply divisibility rules for 2,5 , and 10. M.3.6.2: Apply basic multiplication facts. M.3.6.3: Understand subtraction as an	Add and subtract within 5. Match the numeral in the ones and tens position to a pictorial representation or manipulative of the value. Count forward in multiples from a given number.
Note: Students need not use formal terms for these properties.	unknown-addend problem. M.3.6.4: Recognize division as repeated subtraction, parts of a set, parts of a whole, or the inverse of multiplication.	\square Skip count by 2 s .

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Multiply and divide within 100.	7. *Use strategies based on properties and patterns of multiplication to demonstrate fluency with multiplication and division within 100. a. Fluently determine all products obtained by multiplying two one-digit numbers. b. State automatically all products of two one-digit numbers by the end of third grade.	
	Learning Objectives	Prior Knowledge Skills
	\square M.3.7.1: Name the first 10 multiples of each one-digit natural number. \square M.3.7.2: Recognize multiplication as repeated addition, and division as repeated subtraction. \square M.3.7.3: Apply properties of operations as strategies to add and subtract. \square M.3.7.4: Recall basic addition and subtraction facts.	Recall single-digit subtraction facts. Recall single-digit addition facts. Add and subtract two two-digit numbers with and without regrouping. Determine the value of the number in the ones, tens, hundreds, and thousands place using concrete models or drawings and strategies based on place value.

Operations and Algebraic Thinking

Cluster

Solve problems involving the four operations and identify and explain patterns in arithmetic.

2019 Math COS Standard

8. *Determine and justify solutions for two-step word problems using the four operations and write an equation with a letter standing for the unknown quantity. Determine reasonableness of answers using number sense, context, mental computation, and estimation strategies including rounding.

Learning Objectives	Prior Knowledge Skills
\squareM.3.8.1: Define the identity property of addition and multiplication.	$\square \quad$Explain addition and subtraction problems using concrete objects, pictures.

\square M.3.8.2: Estimating sums and differences using multiple methods, including compatible numbers and rounding, to judge the reasonableness of an answer.
\square M.3.8.3: Apply commutative, associative, and identity properties for all operations to solve problems.
\square M.3.8.4: Identify a rule when given a pattern.
\square M.3.8.5: Solve addition and subtraction problems, including word problems, involving one-and two-digit numbers with and without regrouping, using multiple strategies.
\square M 3.8.6: Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
\square M.3.8.7: Represent multiplication and division with manipulatives.
\square M.3.8.8: Recall basic addition and subtraction facts.
\square Use multiple strategies to add and subtract including counting on, counting back, and using doubles.
\square Create a number pattern.
\square Use multiple strategies to add and subtract including counting on, counting back, and using doubles.
\square Recall single-digit subtraction facts.
\square Recall single-digit addition facts.

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Solve problems involving the four operations and identify and explain patterns in arithmetic.	9. Recognize and explain arithmetic patterns using properties of operations.	
	Learning Objectives	Prior Knowledge Skills
	\square M.3.9.1: Define arithmetic patterns: geometric or numeric. \square M.3.9.2: Explain arithmetic patterns using properties of operations. \square M.3.9.3: Recognize arithmetic patterns (including geometric patterns or patterns in the addition table or multiplication table). \square M.3.9.4: Construct repeating and growing patterns with a variety of representations. \square M.3.9.5: Demonstrate computational fluency, including quick recall, of addition and multiplication facts. M.3.9.6: Duplicate an existing pattern. M.3.9.7: Skip count. M.3.9.8: Represent addition and multiplication with manipulatives.	Explain addition and subtraction problems using concrete objects, pictures. Use multiple strategies to add and subtract including counting on, counting back, and using doubles. Create a number pattern. Use multiple strategies to add and subtract including counting on, counting back, and using doubles.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Use place value 10. Identify the nearest 10 or 100 when rounding whole numbers, using place value understanding. understanding and properties of operations to perform multidigit arithmetic.

Learning Objectives
M.3.10.1: Define rounding.
\square M.3.10.2: Round whole numbers from 100 to 999 using whole numbers from 10 to 99.
\square M.3.10.3: Model rounding whole numbers to the nearest 100.
\square M.3.10.4: Round whole numbers from 10 to 99 using whole numbers from 1 to 9.
\square M.3.10.5: Model rounding whole numbers to the nearest 10.
\square M.3.10.6: Identify the steps in rounding twoand three-digit numbers. Example: Identify the digit that may change and the number to the right.
\square M.3.10.7: Round whole numbers from 1 to 9 and model to show proficiency.
\square M.3.10.8: Understand that the two digits of a two-digit number represent amounts of tens and ones.
\square M.3.10.9: Match the number in the ones, tens, and hundreds position to a pictorial representation or manipulative of the value.

Prior Knowledge Skills

\square Determine the value of the number in the ones, tens, and hundreds place.
\square Recognize the place value of ones, tens, and hundreds.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard
Use place value	11. *Use various strategies to add and subtract fluently within 1000.

understanding and properties of operations to perform multidigit arithmetic.

Learning Objectives

M.3.11.1: Define the commutative and associative properties of addition and subtraction.
\square M.3.11.2: Subtract within 100 using strategies and algorithms based on the relationship between addition and subtraction.
\square M.3.11.3: Subtract within 100 using strategies and algorithms based on properties of operations.
\square M.3.11.4: Subtract within 100 using strategies and algorithms based on place value.
$\square \quad$ M.3.11.5: Add within 100 using strategies and algorithms based on the relationship between addition and subtraction.
$\square \quad$ M.3.11.6: Add within 100 using strategies and algorithms based on properties of operations.
$\square \quad$ M.3.11.7: Add within 100 using strategies and algorithms based on place value.
\square M.3.11.8: Recall basic addition and subtraction facts.

Prior Knowledge Skills

$\square \quad$ Add within 100, including adding a two-digit number and a onedigit number and adding two two-digit numbers.
$\square \quad$ Add within 20, demonstrating fluency for addition within 10.Add and subtract within 20Identify place value for ones, tens, and hundreds.Read number names one through one hundred.

Operations with Numbers: Base Ten		
Cluster	2019 Math COS Standard	
Use place value understanding and properties of operations to perform multidigit arithmetic.	12. Use concrete materials and pictorial models based on place value and properties of operations to find the product of a one-digit whole number by a multiple of ten (from 10 to 90).	
	Learning Objectives	Prior Knowledge Skills
	M.3.12.1: Model place value by multiplying vertically. M.3.12.2: Model properties of operations by multiplying horizontally. M.3.12.3: Recall basic multiplication facts. M.3.12.4: Recall multiplication as repeated addition. \square M.3.12.5: Apply properties of operations as strategies to add.	Identify place value for ones, tens, and hundreds. Recall basic multiplication facts. Recognize properties of operations. Demonstrate that multiplication is the same as repeated addition.

Operations with Numbers: Fractions

Cluster	2019 Math COS Standard

Develop

understanding of fractions as numbers.
Denominators are limited to 2, 3, 4, 6 , and 8.

2019 Math COS Standard
13. *Demonstrate that a unit fraction represents one part of an area model or length model of a whole that has been equally partitioned; explain that a numerator greater than one indicates the number of unit pieces represented by the fraction.

Learning Objectives	Prior Knowledge Skills

\square M.3.13.1: Define fraction, numerator, and denominator.
\square M.3.13.2: Identify the parts of a fraction.
\square M.3.13.3: Label numerator, denominator, and fraction bar.
\square M.3.13.4: Identify parts of a whole with two, three, or four equal parts.
\square M.3.13.5: Distinguish between equal and non-equal parts.
\square M.3.13.6: Partition circles and rectangles into two and four equal shares; describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.Define halves, thirds, fourths, quarters, whole, parts (shares) and equal.
\square Distinguish between equal and non-equal parts.

Operations with Numbers: Fractions

Cluster
 2019 Math COS Standard

Develop

 understanding of fractions as numbers.Denominators are limited to 2, 3, 4, 6 , and 8 .
14. *Interpret a fraction as a number on the number line; locate or represent fractions on a number line diagram.
a. Represent a unit fraction (1 bb) on a number line by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts as specified by the denominator.
b. Represent a fraction ($a a b b$) on a number line by marking off a length of size (1bb) from zero.

Learning Objectives
\square M.3.14.1: Recognize fractions as lengths from zero to one.
\square M.3.14.2: Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent wholenumber sums and differences within 100 on a number diagram.
\square M.3.14.3: Identify a number line
\square M.3.14.4: Recognize whole numbers as lengths from zero to one.
\square M.3.14.5: Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent wholenumber sums and
differences within 100 on a number diagram.
\square M.3.14.6: Identify a number line.
\square M.3.14.7: Label the fractions on a pre-made number line diagram.
\square M.3.14.8: Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-

Prior Knowledge Skills
\square Select numbers on a number line that are more than, less than or equal to a specified number.Count to 20 by ones.
$\square \quad$ Count to 10 by ones.

	number sums and differences within 100 on a number diagram.	
	M.3.14.9: Recognize a number line diagram with equally spaced points.	

Operations with Numbers: Fractions

Cluster

2019 Math COS Standard

Develop understanding of fractions as numbers.
Denominators are limited to 2, 3, 4, 6 , and 8 .
15. *Explain equivalence and compare fractions by reasoning about their size using visual fraction models and number lines.
a. Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers.
b. Compare two fractions with the same numerator or with the same denominator by reasoning about their size (recognizing that fractions must refer to the same whole for the comparison to be valid). Record comparisons using < , >, or = and justify conclusions.

Learning Objectives	Prior Knowledge Skills

\square M.3.15.1: Define equivalent.
\square M.3.15.2: Recognize pictorial representations of equivalent fractions.
\square M.3.15.3: Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.
\square M.3.15.4: Recognize that equal shares of identical wholes need not have the same shape.
\square M.3.15.5: Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape and compose new shapes from the composite shape.
\square M.3.15.6: Label a fraction with multiple representations.

Label numerator, denominator, and fraction bar.Match the number in the ones, tens, and hundreds position to a pictorial representation or manipulative of the value.
\square Distinguish between equal and non-equal parts.
\square Model partitioning circles and rectangles.
\square Identify two-dimensional shapes.
\square Sort two-dimensional shapes.
\square Name shapes.

\begin{tabular}{|c|c|c|}
\hline \& \square
\square
\square
\square
\square

\square
\square
\square

\square \& | M.3.15.7: Recognize that a whole can be partitioned into differing equal parts (halves, fourths, eighths, etc.). M.3.15.8: Partition circles and rectangles into two and four equal shares; and describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of. M.3.15.9: Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler. |
| :--- |
| M.3.15.10: Label a pictorial representation. M.3.15.11: Recognize that a fraction is a part of a whole. |
| M.3.15.12: Partition circles and rectangles into two and four equal shares; describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of. |

\hline
\end{tabular}

Data Analysis

Cluster

Represent and interpret data.

2019 Math COS Standard

16. For a given or collected set of data, create a scaled (one-to-many) picture graph and scaled bar graph to represent a data set with several categories.
a. Determine a simple probability from a context that includes a picture.
b. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled graphs.

Learning Objectives

Prior Knowledge Skills

\square M.3.16.1: Define picture graph, bar graph, and data.
\square M.3.16.2: Interpret the data to solve problems.
\square M.3.16.3: Identify the parts of a graph (xaxis, y-axis, title, key, equal intervals, labels).
\square M.3.16.4: Locate the data on a picture graph and a bar graph.
\square M.3.16.5: Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.
\square M.3.16.6: Directly compare two objects, with a measurable attribute in common, to see which object has "more of" or "less of" the attribute and describe the difference.Describe picture graph and bar graph.Use vocabulary related to comparing data. Examples: more than, less than, most, least, equal.Recognize attributes of data displays.Locate information on data displays.Classify objects into given categories.Sort the categories by count.Recognize different types of data displays.

Data Analysis

Cluster

Represent and interpret data.

2019 Math COS Standard

17. Measure lengths using rulers marked with halves and fourths of an inch to generate data and create a line plot marked off in appropriate units to display the data.

Learning Objectives

M.3.17.1: Define line plot.
\square M.3.17.2: Identify the parts of a line plot.

Prior Knowledge Skills

\square Define length and line plot.
\square M.3.17.3: Measure objects to the nearest inch.
$\square \quad$ M.3.17.4: Identify one-inch units on a ruler starting with 0.
\square M.3.17.5: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square M.3.17.6: Directly compare two objects, with a measurable attribute in common, to see which object has "more of" or "less of" the attribute and describe the difference.Use vocabulary related to comparison of length. Examples: longer, shorter, longest, shortest, taller.
$\square \quad$ Demonstrate rounding up to the nearest whole unit on measurement tools.Demonstrate measuring length using standard units.Describe a line plot.Model measuring length using standard units.Identify the object length.Explore objects in relationship to length.

Measurement

Cluster

Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.

2019 Math COS Standard

18. *Tell and write time to the nearest minute; measure time intervals in minutes (within 90 minutes.)
a. Solve real-world problems involving addition and subtraction of time intervals in minutes by representing the problem on a number line diagram.

Learning Objectives
 \square M.3.18.1: Compare equivalent units of time

 using hours and minutes. Examples: 60 minutes $=$ one hour, 30 minutes $=$ one half of an hour.\square M.3.18.2: Recognize key vocabulary and/or phrases associated with time.
\square M.3.18.3: Compare the lengths of time to complete everyday activities.
\square M.3.18.4: Tell and write time in hours and half-hours using analog and digital clocks.
\square M.3.18.5: Recognize hour, minute, and second hands on an analog clock.
\square M.3.18.6: Count by 5's to 60 .

Prior Knowledge Skills
\square Write numerals 0 to 59 .Recognize numerals 0 to 59 .
\square Count to 60 by fives.
\square Distinguish between analog and digital clocks.
\square Identify the short hand as the hour hand, and the long hand as the minute hand on an analog clock.
\square Identify the first number as the hour, and the numbers after the colon as the minutes on a digital clock.
\square Tell and write time in hours and half-hours using analog and digital clocks.
\square Recognize vocabulary terms related to time measurements.

Measurement

Cluster

Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.

2019 Math COS Standard

19. *Estimate and measure liquid volumes and masses of objects using liters (I), grams (g), and kilograms (kg).
a. Use the four operations to solve one-step word problems involving masses or volumes given in the same metric units.

Learning Objectives

\square M.3.19.1: Define liquid volume, mass, grams, kilograms, and liters.
\square M.3.19.2: Recognize how the standard units of measure compare to one another.
\square M.3.19.3: Identify key terms for word problems.
\square M.3.19.4: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square M.3.19.5: Recall basic addition, subtraction, multiplication, and division facts.
\square M.3.19.6: Describe measurable attributes of objects such as length or weight. Describe several measurable attributes of a single object.

Prior Knowledge Skills

\square Measure objects using standard units.
\square Recall single-digit subtraction facts.
\square Recall single-digit addition facts.

Measurement		
Cluster	2019 Math COS Standard	
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.	20. Find the area of a rectangle with whole number side lengths by tiling without gaps or overlays and counting unit squares.	
	Learning Objectives	Prior Knowledge Skills
	M.3.20.1: Define length. M.3.20.2: Recognize that units of measure must be equal. \square M.3.20.3: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end. \square M.3.20.4: Recognize that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.	\square Identify units of measurement for length. Examples: inches, feet, yard; centimeter, meters. Demonstrate how to use measurement tools. Example: avoiding gaps and overlaps. Identify units of measure on measurement tools. Use vocabulary related to comparison of length. Examples: longer, shorter, longest, shortest, taller.

Measurement

Cluster	2019 Math COS Standard	
Geometric measurement:	21. Count unit squares (square cm , square m , square in, square ft , and improvised or non-standard units) to determine area.	
understand	Learning Objectives	Prior Knowledge Skills
concepts of area and relate area to multiplication and to addition.	\square M.3.21.1: Recognize that unit squares are equal. \square M.3.21.2: Define the units of measurement ($\mathrm{cm}, \mathrm{m}, \mathrm{in}, \mathrm{ft}$). \square M.3.21.3: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.	Identify units of measurement for length. Order three objects by length. Compare the lengths of two objects indirectly by using a third object.

Measurement

Cluster	2019 Math COS Standard	
Geometric measurement:	22. *Relate area to the operations of multiplication using real-world problems, concrete materials, mathematical reasoning, and the distributive property.	
understand	Learning Objectives	Prior Knowledge Skills
concepts of area and relate area to multiplication and to addition.	M.3.22.1: Recognize arrays as multiplication or repeated addition. M.3.22.2: Recall basic addition and multiplication facts. M.3.22.3: Build and draw shapes to possess defining attributes. M.3.22.4: Compose simple shapes to form larger shapes.	\square Recall doubles addition facts with sums to 20. \square Apply signs + and = to actions of joining sets. \square Model written method for composing equations.

Measurement

Cluster
Geometric
measurement:
understand
concepts of area
and relate area to
multiplication and
to addition.

2019 Math COS Standard

23. *Decompose rectilinear figures into smaller rectangles to find the area, using concrete materials.

Learning Objectives
 Prior Knowledge Skills

M.3.23.1: Label pre-made arrays.
\square M.3.23.2: Partition a rectangle into rows and columns of same-size squares, and count to find the total number of them.
\square M.3.23.3: Recall basic addition and multiplication facts.
\square M.3.23.4: Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles). M.3.23.5: Identify a rectangle.
\square Define side, angle, face, closed, and open.
\square Use vocabulary related to shape attributes. Examples: sides, angles, face, closed, open.
\square Trace shapes.
\square Sort triangles, quadrilaterals, pentagons, hexagons, and cubes.
\square Explore triangles, quadrilaterals, pentagons, hexagons, and cubes.

Measurement

Cluster	2019 Math COS Standard	
Geometric measurement:	24. Construct rectangles with the same perimeter and different areas or the same area and different perimeters.	
Recognize	Learning Objectives	Prior Knowledge Skills
perimeter as an attribute of plane figures and distinguish between linear and area measures.	\square M.3.24.1: Define perimeter. M.3.24.2: Recall the formula for perimeter ($P=L+L+W+W$ or $P=2 L+2 W$). M.3.24.3: Recall basic addition and multiplication facts. M.3.24.4: Build and draw shapes to possess defining attributes. \square M.3.24.5: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. \square M.3.24.6: Describe measurable attributes of objects such as length or weight.	\square Recall doubles addition facts. \square Model written method for composing equations.

Measurement

Cluster	2019 Math COS Standard

Geometric measurement:
Recognize
perimeter as an attribute of plane figures and distinguish between linear and area measures.

2019 Math COS Standard
25. Solve real-world problems involving perimeters of polygons, including finding the perimeter given the side lengths and finding an unknown side length of rectangles.

Learning Objectives	Prior Knowledge Skills

\square M.3.25.1: Define perimeter.
\square M.3.25.2: Recall the formula for perimeter ($\mathrm{P}=\mathrm{L}+\mathrm{L}+\mathrm{W}+\mathrm{W}$ or $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$).
\square M.3.25.3: Recall basic addition and multiplication facts. M. 3.23.4: Build and draw shapes to possess defining attributes.
\square M.3.25.4: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square M.3.25.5: Describe measurable attributes of objects such as length or weight.

Geometry		
Cluster	2019 Math COS Standard	
Reason with shapes and their attributes.	26. *Recognize and describe polygons (up to 8 sides), triangles, and quadrilaterals (rhombuses, rectangles, and squares) based on the number of sides and the presence or absence of square corners. a. Draw examples of quadrilaterals that are and are not rhombuses, rectangles, and squares.	
	Learning Objectives	Prior Knowledge Skills
	\square M.3.26.1: Recall the vocabulary of shapes (labels, sides, faces, vertices, etc.). \square M.3.26.2: Recognize and draw shapes having specified attributes such as a given number of angles. \square M.3.26.3: Build and draw shapes to possess defining attributes. \square M.3.26.4: Sort shapes into categories.	Identify squares, circles, triangles, and rectangles. Define side, angle, face, closed, and open. Use vocabulary related to shape attributes. Examples: sides, angles, face, closed, open. Trace shapes. Sort triangles, quadrilaterals, pentagons, hexagons, and cubes. Explore triangles, quadrilaterals, pentagons, hexagons, and cubes. Name shapes. Recognize shapes.

Grade 4

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard

Solve problems with whole numbers using the four operations.

1. *Interpret and write equations for multiplicative comparisons.

Learning Objectives
 Prior Knowledge Skills

\square M.4.1.1: Use arrays to show equal groups in multiplication.
\square M.4.1.2: Recall basic multiplication facts.
\square M.4.1.4: Demonstrate computational fluency, including quick recall of addition and subtraction facts.
\square M.4.1.5: Recognize multiplication as repeated addition.
$\square \quad$ Identify and define the parts of a multiplication problem including factors, multiplier, multiplicand, and product.
$\square \quad$ Use multiplication to find the total number of objects arranged in rectangular arrays based on columns and rows.
$\square \quad$ Write an equation to express the product of the multipliers (factors).
\square Relate multiplication to repeated addition and skip counting.
\square Apply concepts of multiplication through the use of manipulatives, number stories, skip-counting arrays, area of a rectangle, or repeated addition.
\square Apply basic multiplication facts through 9×9 using manipulatives, solving problems, and writing number stories.
$\square \quad$ Solve addition problems with multiple addends.Represent addition using manipulatives.Distinguish between rows and columns.Use repeated addition to solve problems with multiple addends.
\square Count forward in multiples from a given number. Examples: 3, 6, 9, 12; 4, 8, 12, 16.
\square Recall doubles addition facts.
\square Model written method for composing equations.

Operations and Algebraic Thinking

Cluster 2019 Math COS Standard

Solve problems with whole numbers using
the four operations.
2. *Solve word problems involving multiplicative comparison using drawings and write equations to represent the problem, using a symbol for the unknown number.

Learning Objectives

\square M.4.2.1: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
\square M.4.2.2: Recognize key terms to solve word problems.
Examples: in all, how much, how many, in each.
\square M.4.2.3: Apply properties of operations as strategies to add.
\square M.4.2.4: Recall basic multiplication facts.
\square M.4.2.5: Demonstrate computational fluency, including quick recall of addition and subtraction facts.

Prior Knowledge Skills

$\square \quad$ Demonstrate computational understanding of multiplication and division by solving authentic problems with multiple representations using drawings, words, and/or numbers.
$\square \quad$ Identify key vocabulary words to solve multiplication and division word problems.
Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
\square Recall basic multiplication facts.
\square Add and subtract within 20 .
$\square \quad$ Represent repeated addition, subtraction, and equal groups using manipulatives.
$\square \quad$ Distinguish between rows and columns.
\square Use repeated addition to solve problems with multiple addends.
\square Count forward in multiples from a given number.
Examples: 3, 6, 9, 12; 4, 8, 12, 16.
\square Recall doubles addition facts.
$\square \quad$ Model written method for composing equations.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard

Solve problems with whole numbers using the four operations.
3. *Determine and justify solutions for multi-step word problems, including problems where remainders must be interpreted.
a. Write equations to show solutions for multi-step word problems with a letter standing for the unknown quantity.
b. Determine reasonableness of answers for multi-step word problems, using mental computation and estimation strategies including rounding.

Learning Objectives

Prior Knowledge Skills

\square M.4.3.1: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
\square M.4.3.2: Solve single-step word problems.
\square M.4.3.3: Recognize key terms to solve word problems. Examples: in all, how much, how many, in each.
\square M.4.3.4: Solve division problems without remainders.
\square M.4.3.5: Recall basic addition, subtraction, and multiplication facts.
$\square \quad$ Demonstrate computational understanding of multiplication and division by solving authentic problems with multiple representations using drawings, words, and/or numbers.
$\square \quad$ Identify key vocabulary words to solve multiplication and division word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.Recall basic multiplication facts.Add and subtract within 20
$\square \quad$ Represent repeated addition, subtraction, and equal groups using manipulatives.
$\square \quad$ Distinguish between rows and columns.Use repeated addition to solve problems with multiple addends.
\square Count forward in multiples from a given number. Examples: 3, 6, 9, 12; 4, 8, 12, 16.
\square Recall doubles addition facts.
\square Model written method for composing equations.

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard

Gain familiarity with factors and multiples.
4. For whole numbers in the range 1 to 100 , find all factor pairs, identifying a number as a multiple of each of its factors.
a. Determine whether a whole number in the range 1 to 100 is a multiple of a given one-digit number.
b. Determine whether a whole number in the range 1 to 100 is prime or composite.

Learning Objectives

\square M.4.4.1: Define factors, prime number, and composite number.
\square M.4.4.2: Apply properties of operations as strategies to multiply and divide.
\square M.4.4.3: Identify all factor pairs for a whole number in the range 1-20.
\square M.4.4.4: Name the first ten multiples of each one-digit natural number
\square M.4.4.5: Recall basic multiplication facts.
\square M.4.4.6: Count within 1000; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100s.

Prior Knowledge Skills

$\square \quad$ Represent equal groups using manipulatives.
$\square \quad$ Identify and define the parts of a multiplication problem including factors, multiplier, multiplicand and productUse multiplication to find the total number of objects arranged in rectangular arrays based on columns and rows.
$\square \quad$ Write an equation to express the product of the multipliers (factors).
$\square \quad$ Relate multiplication to repeated addition and skip counting.Define pair, odd and even.Recall doubles addition facts with sums to 20.
\square Apply sign+ and = to actions of joining sets
\square Model written method for composing equations.
$\square \quad$ Skip count by 2s.

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Generate and	5. Generate and analyze a number or shape pattern that follows a given rule.	
analyze patterns.	Learning Objectives	Prior Knowledge Skills
	\square M.4.5.1: Identify arithmetic patterns, including patterns in the addition table or multiplication table; and explain them using properties of operations. \square M.4.5.2: Recognize arithmetic patterns (including geometric patterns or patterns in the addition table or multiplication table). M.4.5.3: Construct repeating and growing patterns with a variety of representations. M.4.5.4: Continue an existing pattern. M.4.5.5: Identify arithmetic patterns. M.4.5.6: Demonstrate computational fluency, including quick recall, of addition multiplication facts.	\square Identify a rule when given a pattern. Examples: multiplication and division -"Input x $3=0$ utput". addition and subtraction-"Input $+8=$ Output". Use repeated addition to solve problems with multiple addends. Count forward in multiples from a given number. Examples: 3, 6, 9, 12; 4, 8, $12,16$. Define pair, odd and even. Recall doubles addition facts with sums to 20 . Skip count by 2 s .

Operations with Numbers: Base Ten

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Generalize place
value understanding for multidigit whole numbers.
6. *Using models and quantitative reasoning, explain that in a multi-digit whole number, a digit in any place represents ten times what it represents in the place to its right.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.4.6.1: Use place value understanding to round whole numbers to the nearest 10 or 100.
\square M.4.6.2: Add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
\square M.4.6.3: Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations.
\square M.4.6.4: Recall basic multiplication facts.
\square M.4.6.5: Recall that the three digits of a three-digit number represent amounts of hundreds, tens, and ones, e.g., 706 equals 7 hundreds, 0 tens, and 6 ones.
\square M.4.6.6: Recognize that the numbers 100, $200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
\square M.4.6.7: Recognize that 100 can be thought of as a bundle of ten tens, called a
"hundred".
\square Model place value by multiplying vertically.
\square Model properties of operations by multiplying horizontally.
\square Recall basic multiplication facts.
\square Recall multiplication as repeated addition.
\square Represent numbers with multiple concrete models.
Examples: concrete models - base ten blocks, number lines, linking cubes, straw bundles.
\square Count to 1000 by hundreds.
\square Count to 100 by tens.

Operations with Numbers: Base Ten

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Generalize place
value understanding for multidigit whole numbers.
7. *Read and write multi-digit whole numbers using standard form, word form, and expanded form.

Learning Objectives

M.4.7.1: Compare two three-digit numbers based on meanings of the hundreds, tens, and one's digits using $>$, $=$, and < symbols to record the results of comparisons.
\square M.4.7.2: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
$\square \quad$ M.4.7.3: Convert a number written in expanded notation to standard form.

Prior Knowledge Skills

Define greater than, less than and equal to.Compare two two-digit numbers based on meanings of the ten's and one's digits, recording the results of comparisons with the symbols $>$, $=$, and $<$.\square Arrange two-digit numbers in order from greatest to least or least to greatest.
$\square \quad$ Identify zero as a place holder in two-digit and three-digit numbers.Model using >, =, and < symbols to record the results of
comparisons of two two-digit numbers.
$\square \quad$ Select numbers on a number line that are more than, less than or equal to a specified number.
$\square \quad$ Match the words greater than, equal to and less than to the symbols $>$, $=$, and $<$.Determine the value of the digits in the ones and tens place.Identify sets with more, less, or equal objects.Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
$\square \quad$ Number \& Operations in Base Ten.
$\square \quad$ Use place value understanding and properties of operations to add and subtract.

Operations with Numbers: Base Ten

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Generalize place
value understanding for multidigit whole numbers.
8. Use place value understanding to compare two multi-digit numbers using $>=$, and < symbols.

Learning Objectives

M.4.8.1: Use place value understanding to round whole numbers to the nearest 10 or 100.
\square M.4.8.2: Model rounding whole numbers to the nearest 100.
\square M.4.8.3: Round whole numbers from 100 to 999 using whole numbers from 10 to 99.
\square M.4.8.4: Model rounding whole numbers to the nearest 10.
\square M.4.8.5: Round whole numbers from 10 to 99 using whole numbers from 1 to 9.
\square M.4.8.6: Round whole numbers from 1 to 9 and model to show proficiency.

Prior Knowledge Skills

\square Define rounding.
\square Round whole numbers from 100 to 999 using whole numbers from 10 to 99.
\square Model rounding whole numbers to the nearest 100 .
\square Round whole numbers from 10 to 99 using whole numbers from 1 to 9.
\square Model rounding whole numbers to the nearest 10.Identify the steps in rounding two- and three-digit numbers. Example: Identify the digit that may change and the number to the right.
\square Round whole numbers from 1 to 9 and model to show proficiency.
\square Understand that the two digits of a two-digit number represent amounts of tens and ones.
\square Match the number in the ones, tens, and hundreds position to a pictorial representation or manipulative of the value.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Generalize place

value

understanding
for multidigit whole numbers.
9. Round multi-digit whole numbers to any place using place value understanding.

Learning Objectives

M.4.9.1: Add and subtract within 1000.
\square M.4.9.2: Apply signs + , - , and $=$ to actions of joining and separating sets.
\square M.4.9.3: Add and subtract single-digit numbers.
\square M.4.9.4: Recall basic addition and subtraction facts.

Prior Knowledge Skills

 subtraction.$\square \quad$ Subtract within 100 using strategies and algorithms based on the relationship between addition and subtraction. value.
$\square \quad$ Add within 100 using strategies and algorithms based on the
$\square \quad$ Define the commutative and associative properties of addition and
\square Subtract within 100 using strategies and algorithms based on place relationship between addition and subtraction. Add within 100 using strategies and algorithms based on properties of operations.
\square Add within 100 using strategies and algorithms based on place value.
$\square \quad$ Recall basic addition and subtraction facts.Define regrouping, total, sum, difference and solve.Add and subtract two two-digit numbers with and without regrouping.
$\square \quad$ Determine the value of the number in the ones, tens, hundreds and thousands place using concrete models or drawings and strategies based on place value.
$\square \quad$ Match the number in the ones, tens, hundreds, and thousands position to a pictorial representation or manipulative of the value.

Operations with Numbers: Base Ten

Cluster

Use place value understanding and properties of operations to perform multidigit arithmetic with whole numbers.

2019 Math COS Standard

10. *Use place value strategies to fluently add and subtract multi-digit whole numbers and connect strategies to the standard algorithm.

Learning Objectives

\square M.4.10.1: Multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5$ $=8$) or properties of operations.
\square M.4.10.2: Multiply single-digit numbers.
\square M.4.10.3: Recall basic multiplication facts.
\square M.4.10.4: Apply concepts of multiplication through the use of manipulatives, number stories, skip-counting arrays, area of a rectangle, or repeated addition.

Prior Knowledge Skills

\square Define the commutative and associative properties of addition and subtraction.
\square Subtract within 100 using strategies and algorithms based on the relationship between addition and subtraction.
\square Subtract within 100 using strategies and algorithms based on properties of operations.
\square Subtract within 100 using strategies and algorithms based on place value.
\square Add within 100 using strategies and algorithms based on the relationship between addition and subtraction.
\square Add within 100 using strategies and algorithms based on
properties of operations.
\square Add within 100 using strategies and algorithms based on place value.
\square Recall basic addition and subtraction facts.
\square Define regrouping, total, sum, difference and solve.
\square Add and subtract two two-digit numbers with and without regrouping.
\square Determine the value of the number in the ones, tens, hundreds, and thousands place using concrete models or drawings and strategies based on place value.
\square Match the number in the ones, tens, hundreds, and thousands position to a pictorial representation or manipulative of the value.
\square Model written method for recording horizontal and vertical addition and subtraction problems.
$\square \quad$ Represent two- and three-digit numbers with multiple models. Examples: models—base ten blocks, number lines, linking cubes, straw bundles.

\square Recall single-digit addition and subtraction facts.
\square Add and subtract within 20, e.g., by using objects or drawings to represent the problem.

Operations with Numbers: Base Ten

Cluster

Use place value understanding and properties of operations to perform multidigit arithmetic with whole numbers.

2019 Math COS Standard

11. *Find the product of two factors (up to four digits by a one-digit number and two two-digit numbers), using strategies based on place value and the properties of operations.
a. Illustrate and explain the product of two factors using equations, rectangular arrays, and area models.

Learning Objectives

\square M.4.11.1: Divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5$ = 8).
\square M.4.11.2: Divide within 100, using strategies such as properties of operations.
\square M.4.11.3: Multiply within 100, using strategies such as properties of operations.
\square M.4.11.4: Multiply within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=4=$, one knows $40 \div 5$ = 8).
\square M.4.11.5: Recall products of two one-digit numbers.
\square M.4.11.6: Name the first 10 multiples of each one-digit natural number. Example: $7,14,21,28,35,42,49,56,63,70$.
\square M.4.11.7: Recall basic addition, subtraction, and multiplication facts.

Prior Knowledge Skills

\square Apply divisibility rules for 2, 5, and 10.
Example: Recognizing that 32 is divisible by 2 because the digit in the ones place is even.
\square Apply basic multiplication facts.
\square Understand subtraction as an unknown-addend problem.
\square Recognize division as repeated subtraction, parts of a set, parts of a whole, or the inverse of multiplication.
\square Name the first 10 multiples of each one-digit natural number. Example: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70.
\square Recognize multiplication as repeated addition, and division as repeated subtraction.
\square Apply properties of operations as strategies to add and subtract.
\square Recall basic addition and subtraction facts.
\square Use repeated addition to solve problems with multiple addends.
\square Count forward in multiples from a given number.
Examples: 3, 6, 9, 12; 4, 8, 12, 16.
\square Recall doubles addition facts.
\square Model written method for composing equations.

Operations with Numbers: Base Ten

Cluster

Use place value understanding and properties of operations to perform multidigit arithmetic with whole numbers.

2019 Math COS Standard

12. *Use strategies based on place value, properties of operations, and/or the relationship between multiplication and division to find whole-number quotients and remainders with one-digit divisors and up to four-digit dividends.
a. Illustrate and/or explain quotients using equations, rectangular arrays, and/or area models.

Learning Objectives

\square M.4.12.1: Define fraction, numerator, and denominator.
$\square \quad$ M.4.12.2: Recognize fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts.
\square M.4.12.3: Identify the parts of a fraction a/b as the quantity formed by a parts and size 1/b.
\square M.4.12.4: Recognize fractions as numerals that may represent division problems.
\square M.4.12.5: Label numerator, denominator, and fraction bar.
$\square \quad$ M.4.12.6: Identify parts of a whole with two, three, or four equal parts.
\square M.4.12.7: Recognize that equal shares of identical wholes need not have the same shape.
\square M.4.12.8: Distinguish between equal and non-equal parts.

Prior Knowledge Skills

\square Recognize fractions as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Identify a number line.
\square Recognize whole numbers as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Identify a number line.
$\square \quad$ Label the fractions on a pre-made number line diagram.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Recognize a number line diagram with equally spaced points.
\square Compare length using non-standard units to determine which is longer.

Operations with Numbers: Fractions

Cluster

Extend
understanding of fraction equivalence and ordering.
Denominators are limited to 2, 3, 4,
$5,6,8,10,12$, and 100 .

2019 Math COS Standard

13. *Using area and length fraction models, explain why one fraction is equivalent to another, taking into account that the number and size of the parts differ even though the two fractions themselves are the same size.
a. Apply principles of fraction equivalence to recognize and generate equivalent fractions.

Learning Objectives

\square M.4.13.1: Identify fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts and size $1 / b$.
\square M.4.13.2: Identify a fraction as a number on the number line; represent fractions on a number line diagram.
\square M.4.13.3: Recognize a fraction as a number on the number line.
\square M.4.13.4: Represent fractions on a number line diagram.
\square M.4.13.5: Recognize fractions as numerals that may represent division problems.
\square M.4.13.6: Label numerator, denominator, and fraction bar.
\square M.4.13.7: Identify parts of a whole with two, three, or four equal parts.
\square M.4.13.8: Distinguish between equal and non-equal parts.
\square M.4.13.9: Define area, length, equivalent, fraction, numerator, and denominator.

Prior Knowledge Skills

\square Recognize fractions as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Identify a number line.
\square Recognize whole numbers as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Identify a number line.
\square Label the fractions on a pre-made number line diagram.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Recognize a number line diagram with equally spaced points.
\square Compare length using non-standard units to determine which is longer.

Operations with Numbers: Fractions

Cluster

2019 Math COS Standard

Extend
understanding of fraction equivalence and ordering.
Denominators are
limited to 2, 3, 4,
$5,6,8,10,12$, and 100.
14. *Compare two fractions with different numerators and different denominators using concrete models, benchmarks $(0,1 / 2,1)$, common denominators, and/or common numerators, recording the comparisons with symbols $>,=$, or $<$, and justifying the conclusions.
a. Explain that comparison of two fractions is valid only when the two fractions refer to the same whole.

Learning Objectives

\square M.4.14.1: Identify fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts and size 1/b.
\square M.4.14.2: Identify a fraction as a number on the number line, represent fractions on a number line diagram.
\square M.4.14.3: Recognize a fraction as a number on the number line.
\square M.4.14.4: Represent fractions on a number line diagram.
\square M.4.14.5: Recognize fractions as numerals that may represent division problems.
\square M.4.14.6: Label numerator, denominator, and fraction bar.
\square M.4.14.7: Identify parts of a whole with two, three, or four equal parts.
\square M.4.14.8: Distinguish between equal and non-equal parts.

Prior Knowledge Skills

\square Recognize fractions as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Identify a number line.
\square Recognize whole numbers as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Identify a number line.
\square Label the fractions on a pre-made number line diagram.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.
\square Recognize a number line diagram with equally spaced points.
\square Compare length using non-standard units to determine which is longer.

Operations with Numbers: Fractions

Cluster

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

2019 Math COS Standard

15. *Model and justify decompositions of fractions and explain addition and subtraction of fractions as joining or separating parts referring to the same whole.
a. Decompose a fraction as a sum of unit fractions and as a sum of fractions with the same denominator in more than one way using area models, length models, and equations.
b. Add and subtract fractions and mixed numbers with like denominators using fraction equivalence, properties of operations, and the relationship between addition and subtraction.
c. Solve word problems involving addition and subtraction of fractions and mixed numbers having like denominators, using drawings, visual fraction models, and equations to represent the problem.
Learning Objectives
\square M.4.15.1: Recognize that a whole can be partitioned into differing equal parts (halves, fourths, eighths, etc.).
\square M.4.15.2: Identify numerator and denominator.
\square M.4.15.3: Recall basic addition and subtraction facts.
\square M.4.15.4: Demonstrate an understanding of fractional parts.
\square M.4.15.5: Recall basic addition and subtraction facts.
\square M.4.15.6: Define mixed numbers.
\square M.4.15.7: Recall basic addition and subtraction facts.
\square M.4.15.8: Demonstrate an understanding of fractional parts.
\square M.4.15.9: Solve basic word problems using whole numbers.
\square M.4.15.10: Express parts of a whole as a fraction.

Prior Knowledge Skills
\square Define fraction, numerator, and denominator.
\square Identify the parts of a fraction a / b as the quantity formed by a parts and size $1 / b$.
\square Label numerator, denominator, and fraction bar.
\square Identify parts of a whole with two, three, or four equal parts.
\square Distinguish between equal and non-equal parts.
\square Partition circles and rectangles into two and four equal shares; describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
\square Recognize fractions as lengths from zero to one.
\square Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2 \ldots$, and represent whole-number sums and differences within 100 on a number diagram.

| | \squareM.4.15.11: Write number sentences for
 word problems. |
| :--- | :--- | :--- | :--- |
| \squareM.4.15.12: Identify key terms in word
 problems. | |
| \squareM.4.15.13: Recall basic addition and
 subtraction facts. | |

Operations with Numbers: Fractions

Cluster

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

2019 Math COS Standard

16. *Apply and extend previous understandings of multiplication to multiply a whole number times a fraction.
a. Model and explain how a non-unit fraction can be represented by a whole number times the unit fraction.
b. Extend previous understanding of multiplication to multiply a whole number times any fraction less than one.
c. Solve word problems involving multiplying a whole number times a fraction using visual fraction models and equations to represent the problem.
Learning Objectives

Prior Knowledge Skills

\square M.4.16.1: Recognize fractions in their simplest forms.
\square M.4.16.2: Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers.
\square M.4.16.3: Demonstrate an understanding of fractional parts.
\square M.4.16.4: Apply properties of operations as strategies to multiply and divide.
\square M.4.16.5: Recall basic multiplication facts.
\square M.4.16.6: Define multiple.
\square M.4.16.7: Compare two fractions with the same numerator or the same denominator by reasoning about their size.
\square M.4.16.8: Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square M.4.16.9: Record results of comparisons with the symbols >, $=$, or <, and justify the conclusions, e.g., by using a visual fraction model.
\square Define fraction, numerator, and denominator.
\square Identify the parts of a fraction a / b as the quantity formed by a parts and size 1/b.
\square Label numerator, denominator, and fraction bar.
\square Identify parts of a whole with two, three, or four equal parts.
\square Distinguish between equal and non-equal parts.
\square Partition circles and rectangles into two and four equal shares; describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
\square Demonstrate conceptual understanding of adding or subtracting 10 using concrete models.
\square Recognize the place value of ones, tens, and hundreds.
\square Count forward and backward by 100 .
\square Count forward and backward by 10.

Operations with Numbers: Fractions

Cluster

Understand decimal notation for fractions and compare decimal fractions.
Denominators are limited to 10 and 100.

2019 Math COS Standard

17. *Express, model, and explain the equivalence between fractions with denominators of 10 and 100. a. Use fraction equivalency to add two fractions with denominators of 10 and 100.

Learning Objectives

\square M.4.17.1: Recognize equivalent forms of fractions and decimals.
\square M.4.17.2: Demonstrate equivalent fractions using concrete objects or pictorial representation.
\square M.4.17.3: Recognize pictorial representations of equivalent fractions and decimals in tenths and hundredths.
\square M.4.17.4: Define equivalency.
\square M.4.17.5: Identify place value of decimals to the tenths and hundredths.
\square M.4.17.6: Use place value understanding to round whole numbers to the nearest 10 or 100 .

Prior Knowledge Skills

\square Define equivalent.
\square Recognize pictorial representations of equivalent fractions.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.
\square Recognize that equal shares of identical wholes need not have the same shape.
\square Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or threedimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape and compose new shapes from the composite shape.
\square Label a fraction with multiple representations.
\square Partition circles and rectangles into two and four equal shares; and describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.
$\square \quad$ Label a pictorial representation.

Operations with Numbers: Fractions

Cluster

Understand

decimal notation for fractions and compare decimal fractions.
Denominators are limited to 10 and 100.

2019 Math COS Standard

18. *Use models and decimal notation to represent fractions with denominators of 10 and 100.

Learning Objectives

M.4.18.1: Compare two fractions with the same numerator or the same denominator by reasoning about their size.
\square M.4.18.2: Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square M.4.18.3: Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
\square M.4.18.4: Convert fractions to decimals.
\square M.4.18.5: Compare two decimals to tenths.
\square M.4.18.6: Compare whole numbers.
\square M.4.18.7: Identify comparison symbols. Examples: $>,<$, and $=$.

Prior Knowledge Skills

\square Define equivalent.
\square Recognize pictorial representations of equivalent fractions.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.
\square Recognize that equal shares of identical wholes need not have the same shape.
\square Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or threedimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape and compose new shapes from the composite shape.
\square Label a fraction with multiple representations.
\square Recognize that a whole can be partitioned into differing equal parts (halves, fourths, eighths, etc.).
\square Partition circles and rectangles into two and four equal shares; and describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.
\square Label a pictorial representation.
\square Recognize that a fraction is a part of a whole. M. 3.15b.4: Partition circles and rectangles into two and four equal shares; describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
$\square \quad$ Define numerator and denominator.

* Critical Standard

			Partition circles and rectangles into two, three, or four equal shares; describe the shares using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves, three thirds, or four fourths. Recognize that a whole can be partitioned into differing equal parts (halves, fourths, eighths, etc.). Identify parts of a whole. Represent a fraction with a pictorial model. Identify <, >, and = signs. Recognize that equal shares of identical wholes need not have the same shape. Recognize that a whole can be partitioned into equal parts (halves, fourths, eighths, etc.). Order three objects by length; compare the lengths of two objects indirectly by using a third object. Define greater than, less than and equal to. Compare two two-digit numbers based on meanings of the ten's and one's digits, recording the results of comparisons with the symbols >, =, and <. Arrange two-digit numbers in order from greatest to least or least to greatest. Identify zero as a place holder in two-digit and three-digit numbers. Model using >, =, and < symbols to record the results of comparisons of two two-digit numbers. Select numbers on a number line that are more than, less than or equal to a specified number. Match the words greater than, equal to and less than to the symbols >, =, and <. Determine the value of the digits in the ones and tens place. Identify sets with more, less, or equal objects.

Operations with Numbers: Fractions

Cluster

Understand decimal notation for fractions and compare decimal fractions.
Denominators are limited to 10 and 100.

2019 Math COS Standard

19. Use visual models and reasoning to compare two decimals to hundredths (referring to the same whole), recording comparisons using symbols $>,=$, or $<$, and justifying the conclusions.

Learning Objectives

\square M.4.19.1: Compare two fractions with the same numerator or the same denominator by reasoning about their size.
\square M.4.19.2: Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square M.4.19.3: Record the results of comparisons with the symbols >, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
\square M.4.19.4: Convert fractions to decimals.
\square M.4.19.5: Compare two decimals to tenths.
\square M.4.19.6: Compare whole numbers.
\square M.4.19.7: Identify comparison symbols. Examples: >, <, and =.

Prior Knowledge Skills

\square Define equivalent.
\square Recognize pictorial representations of equivalent fractions.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.
\square Recognize that equal shares of identical wholes need not have the same shape.
\square Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or threedimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape and compose new shapes from the composite shape.
\square Label a fraction with multiple representations.
\square Recognize that a whole can be partitioned into differing equal parts (halves, fourths, eighths, etc.).
\square Partition circles and rectangles into two and four equal shares; and describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.

Data Analysis

Cluster

Represent and interpret data.

2019 Math COS Standard

20. Interpret data in graphs (picture, bar, and line plots) to solve problems using numbers and operations.
a. Create a line plot to display a data set of measurements in fractions of a unit.
b. Solve problems involving addition and subtraction of fractions using information presented in line plots.

Learning Objectives

\square M.4.20.1: Display data by making a line plot where the horizontal scale is marked off in appropriate units - whole numbers, halves, or quarters.
\square M.4.20.2: Interpret data using graphs including bar, line, and circle graphs, and Venn diagrams.
\square M.4.20.3: Identify the parts of a line plot.
\square M.4.20.4: Recognize a line plot.
\square M.4.20.5: Draw a scaled picture graph and a scaled bar graph to represent a data set.

Prior Knowledge Skills

\square Define picture graph, bar graph, and data.
\square Interpret the data to solve problems.
\square Identify the parts of a graph (x-axis, y-axis, title, key, equal intervals, labels).
\square Locate the data on a picture graph and a bar graph.
\square Directly compare two objects, with a measurable attribute in common, to see which object has "more of" or "less of" the attribute and describe the difference.
$\square \quad$ Define line plot.
\square Identify the parts of a line plot.
\square Measure objects to the nearest inch.
\square Identify one-inch units on a ruler starting with 0 .
\square Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Directly compare two objects, with a measurable attribute in common, to see which object has "more of" or "less of" the attribute and describe the difference.
$\square \quad$ Use addition and subtraction within 20 to solve addition and subtraction word problems with an unknown number.
Describe a picture graph and a bar graph.

Measurement

Cluster

Solve problems involving measurement and conversion of
measurements from a larger unit to a smaller unit.

2019 Math COS Standard

21. Select and use an appropriate unit of measurement for a given attribute (length, mass, liquid volume, time) within one system of units: metric - km, m, cm; kg, g, l, ml; customary - lb, oz; time - hr, min, sec.
a. Within one system of units, express measurements of a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table.

Learning Objectives

\square M.4.21.1: Define conversion.
\square M.4.21.2: Define length, kilometers, meters, and centimeters.
\square M.4.21.3: Define weight, kilograms, grams, pounds, ounces, liters, and milliliters
\square M.4.21.4: Define hour, minute, second.
\square M.4.21.5: Measure and estimate liquid volumes and masses of objects using standard units of grams, kilograms, and liters.
\square M.4.21.6: Identify standard units of measurement equivalents. Examples: 60 minutes equals 1 hour, 16 ounces equals 1 pound.
\square M.4.21.7: Match measurement units to abbreviations. Examples: kilometers (km), meters (m), centimeters (cm), kilograms (kg), grams (g), pounds (lb), ounces (oz), liters (I), milliliters (ml).

Prior Knowledge Skills

Define liquid volume, mass, grams, kilograms, and liters.
\square Recognize how the standard units of measure compare to one another.
\square Identify key terms for word problems. Examples: Difference, altogether, in all, between.
\square Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Recall basic addition, subtraction, multiplication, and division facts.
\square Describe measurable attributes of objects such as length or weight. Describe several measurable attributes of a single object.
\square Compare equivalent units of time using hours and minutes. Examples: 60 minutes $=$ one hour, 30 minutes $=$ one half of an hour.
\square Recognize key vocabulary and/or phrases associated with time. Examples: Quarter 'til = 15 minutes before; half past the hour $=30$ minutes after the hour.
\square Compare the lengths of time to complete everyday activities Examples: Brushing your teeth = about 2 minutes; riding the bus = about 20 minutes.
\square Tell and write time in hours and half-hours using analog and digital clocks.
-Recognize hour, minute, and second hands on an analog clock.
$\square \quad$ Count by 5's to 60 .

* Critical Standard

		$\square \quad$ Determine the monetary value of a set of like and unlike bills. Determine the monetary value of a set of like and unlike coins. Apply addition and subtraction strategies. Understand key words in addition and subtraction word problems involving money. Examples: adding to, taking from, putting together, taking apart, sum, difference, all together, how much more, how much is left, in all, cents, dollar, change, paid, total. \square Count forward from a given number by ones, fives, tens, and twenty-fives. Identify coins and bills and their value. Identify symbols for dollar (\$), cent ($($). Identify coins by name including penny, nickel, dime, and quarter. Sort pennies, nickels, dimes, and quarters. Count 10 objects. Examples: pennies and dollar bills. Tell and write time in hours and half-hours using analog and digital clocks. $\square \quad$ Recognize vocabulary terms related to time measurements. Examples: minute, hour, half hour, o'clock, morning, evening, a.m., p.m. Illustrate time to hour and half hour. Example: Given the time 3:00, illustrate long hand and short hand positions on a clock. Identify the short hand as the hour hand, and the long hand as the minute hand on an analog clock. Identify the first number as the hour, and the numbers after the colon as the minutes on a digital clock. Write numerals 0 to 59. Recognize numerals 0 to 59. Count to 60 by fives. Distinguish between analog and digital clocks. Organize, represent, and interpret data up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

Measurement

Cluster

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

2019 Math COS Standard

22. Use the four operations to solve measurement word problems with distance, intervals of time, liquid volume, mass of objects, and money.
a. Solve measurement problems involving simple fractions or decimals.
b. Solve measurement problems that require expressing measurements given in a larger unit in terms of a smaller unit.
c. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Learning Objectives

\square M.4.22.1: Define distance, time, elapsed time, volume, mass.
\square M.4.22.2: Determine elapsed time to the day with calendars and to the hour with a clock.
\square M.4.22.3: Express liquid volumes and masses of objects using standard units of grams, kilograms, and liters.
\square M.4.22.4: Use addition, subtraction, multiplication, and division to solve oneand two-step word problems.
\square M.4.22.5: Recognize key terms to solve word problems.
\square M.4.22.6: Recall basic facts for addition, subtraction, multiplication, and division.
\square M.4.22.7: Identify monetary equivalents. Examples: four quarters equal one dollar, five one-dollar bills equal five dollars.

Prior Knowledge Skills

\square Define liquid volume, mass, grams, kilograms, and liters.
\square Recognize how the standard units of measure compare to one another.
\square Identify key terms for word problems.
Examples: Difference, altogether, in all, between.
\square Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Recall basic addition, subtraction, multiplication, and division facts.
\square Describe measurable attributes of objects such as length or weight. Describe several measurable attributes of a single object.
\square Compare equivalent units of time using hours and minutes. Examples: 60 minutes $=$ one hour, 30 minutes $=$ one half of an hour.
\square Recognize key vocabulary and/or phrases associated with time. Examples: Quarter 'til = 15 minutes before; half past the hour $=30$ minutes after the hour.

Measurement

Cluster

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

2019 Math COS Standard

23. Apply area and perimeter formulas for rectangles in real-world and mathematical situations.

Learning Objectives
 Prior Knowledge Skills

\square M.4.23.1: Recall the formula for area ($L x$ W).
\square M.4.23.2: Recognize that unit squares are equal.
\square M.4.23.3: Recall the formula for perimeter ($P=L+L+W+W$ or $P=2 L+2 W$).
\square M.4.23.4: Recall basic addition and multiplication facts.
\square Define perimeter.Recall the formula for perimeter $(P=L+L+W+W$ or $P=2 L+2 W)$.Recall basic addition and multiplication facts.Build and draw shapes to possess defining attributes.Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
$\square \quad$ Describe measurable attributes of objects such as length or weight.
\square Define rows, columns, and total.Identify rectangle.Count to 20 by ones.
$\square \quad$ Trace partitions in a rectangle.

Measurement

Cluster	20
Geometric measurement:	2

24. Identify an angle as a geometric shape formed wherever two rays share a common endpoint.

Learning Objectives

M.4.24.1: Define degree, angle, ray, and vertices.
\square M.4.24.2: Recognize and draw shapes having specified attributes such as a given number of angles or a given number of equal faces.
\square M.4.24.3: Estimate angle measures using $45^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$, or 360°.
\square M.4.24.4: Identify angle, ray, and vertices.
\square M.4.24.5: Draw shapes to possess defining attributes.

Prior Knowledge Skills

\square Build and draw shapes to possess defining attributes.Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles).Model partitioning circles and rectangles.
\square Decompose pictures made of simple shapes.Identify squares, circles, triangles, and rectangles.Explore shapes or figures that can be decomposed into smaller equal parts.

Measurement

Cluster

Geometric measurement: understand concepts of angle and measure angles.

2019 Math COS Standard

25. Use a protractor to measure angles in whole-number degrees and sketch angles of specified measure.

Learning Objectives

M.4.25.1: Define symmetry.
\square M.4.25.2: Model using a protractor to draw angles.
\square M.4.25.3: Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.
\square M.4.25.4: Measure the length of an object by selecting and using appropriate tools such as a ruler.
\square M.4.25.5: Measure length using standard and non-standard units of measurement.
\square M.4.25.6: Plot points on grids, graphs, and maps using coordinates.
\square M.4.25.7: Draw points, lines, line segments, and parallel and perpendicular lines, angles, and rays.
\square M.4.25.8: Identify lines of symmetry on one-dimensional figures.

Prior Knowledge Skills

Build and draw shapes to possess defining attributes.Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles).
\square Identify a rectangle.
\square Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Define halves, thirds, fourths, quarters, whole, parts (shares) and equal.
\square Distinguish between equal and non-equal parts.
\square Model partitioning circles and rectangles.
\square Decompose pictures made of simple shapes.
\square Identify squares, circles, triangles, and rectangles.
\square Explore shapes or figures that can be decomposed into smaller equal parts.

Measurement

Cluster

Geometric measurement: understand concepts of angle and measure angles.

2019 Math COS Standard

26. Decompose an angle into non-overlapping parts to demonstrate that the angle measure of the whole is the sum of the angle measures of the parts.
a. Solve addition and subtraction problems on a diagram to find unknown angles in real-world or mathematical problems.

Learning Objectives

\square M.4.26.1: Identify straight angles.

- M.4.26.2: Recognize angle measures such as $45^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 300^{\circ}$.
\square M.4.26.3: Recall basic addition and subtraction facts.
\square M.4.26.4: Skip count by fives and tens.

Prior Knowledge Skills

Build and draw shapes to possess defining attributes.
\square Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles).
\square Identify a rectangle.
\square Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
\square Define halves, thirds, fourths, quarters, whole, parts (shares) and equal.
\square Distinguish between equal and non-equal parts.Model partitioning circles and rectangles.Decompose pictures made of simple shapes.Identify squares, circles, triangles, and rectangles.Explore shapes or figures that can be decomposed into smaller equal parts.

Geometry

Cluster

Draw and identify lines and angles, and identify shapes by properties of their lines and angles.

2019 Math COS Standard

27. *Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines, and identify these in two-dimensional figures.

Learning Objectives

\square M. 4.27.1: Define points, lines, line segments, rays, right angle, acute angle, obtuse angle, perpendicular lines, and parallel lines.
\square M. 4.27.2: Define two-dimensional figure.
\square M. 4.27.3: Recognize one-dimensional points, lines, and line segments.
\square M. 4.27.4: Model shapes in the world by building shapes from components.

Prior Knowledge Skills

\square Recall the vocabulary of shapes (labels, sides, faces, vertices, etc.).
\square Recognize and draw shapes having specified attributes such as a given number of angles.
\square Build and draw shapes to possess defining attributes.Sort shapes into categories
\square Define side, angle, face, closed, and open.Use vocabulary related to shape attributes. Examples: sides, angles, face, closed, open.Trace shapes.Sort triangles, quadrilaterals, pentagons, hexagons, and cubes. Explore triangles, quadrilaterals, pentagons, hexagons, and cubes.

Geometry

Cluster

Draw and identify lines and angles, and identify shapes by properties of their lines and angles.

2019 Math COS Standard

28. *Identify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size.
a. Describe right triangles as a category and identify right triangles.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.4.28.1: Define right angle.
\square M.4.28.2: Recognize that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals)
\square M.4.28.3: Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
\square M.4.28.4: Recognize and draw shapes having specified attributes such as a given number of angles or a given number of equal faces.
\square M.4.28.5: Identify triangles.
\square Recall the vocabulary of shapes (labels, sides, faces, vertices, etc.).
\square Recognize and draw shapes having specified attributes such as a given number of angles.
\square Build and draw shapes to possess defining attributes.
\square Sort shapes into categories.
\square Define side, angle, face, closed, and open.
\square Use vocabulary related to shape attributes, Examples: sides, angles, face, closed, open.
\square Trace shapes.
\square Sort triangles, quadrilaterals, pentagons, hexagons, and cubes.
\square Explore triangles, quadrilaterals, pentagons, hexagons, and cubes.

Geometry

Cluster

Draw and identify lines and angles and identify shapes by properties of their lines and angles.

2019 Math COS Standard

29. Define a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts.
a. Identify line-symmetric figures and draw lines of symmetry.

Learning Objectives \quad Prior Knowledge Skills

\square M.4.29.1: Identify line symmetric figures.
\square M.4.29.2: Draw lines of symmetry on a one-dimensional figure.
\square M. 4.29.3: Recognize lines of symmetry on a one-dimensional figure.
\square Recognize a fraction as part of a whole
\square Decompose a large pre-made shape using smaller shapes.
\square Compose a large pre-made shape using smaller shapes.
\square Partition a rectangle into rows and columns of same-size squares, and count to find the total number of them.
\square Partition circles and rectangles into two, three, or four equal shares; describe the shares using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves, three thirds, or four fourths.
\square Define halves, thirds, fourths, quarters, whole, parts (shares) and equal.
\square Distinguish between equal and non-equal parts.Model partitioning circles and rectangles.Decompose pictures made of simple shapes

Grade 5

Operations and Algebraic Thinking

Cluster	2019 Math COS Standard

Write and interpret numerical expressions.

1. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative, and distributive properties.

Learning Objectives \quad Prior Knowledge Skills

\square M.5.1.1: Define parentheses, braces, and brackets.
\square M.5.1.2: Distinguish between nonnumerical and numerical expression.
\square M.5.1.3: Recognize expressions.
\square M.5.1.4: Apply properties of operations as strategies to add and subtract.
\square M.5.1.5: Represent addition and subtraction with objects, mental images, drawings, expressions, or equations.
\square Write, explain, and evaluate numerical expressions representing two-step problems in context.
\square Evaluate numerical expressions with grouping symbols.
\square Translate a numerical expression into words.
$\square \quad$ Write a numerical expression given a mathematical expression in words.

Operations and Algebraic Thinking		
Cluster	2019 Math COS Standard	
Analyze patterns and relationships.	2. Generate two numerical patterns using two given rules and complete an input/output table for the data. a. Use data from an input/output table to identify apparent relationships between corresponding terms. b. Form ordered pairs from values in an input/output table. b. Graph ordered pairs from an input/output table on a coordinate plane.	
	Learning Objectives	Prior Knowledge Skills
	\square M.5.2.1: Construct repeating and growing patterns with a variety of representations, M.5.2.2: Continue an existing pattern. M.5.2.3: Identify arithmetic patterns (including patterns in the addition table or multiplication table).	Generate two numerical patterns using two given rules. Complete an input/output table for data. Identify relationship between terms in an input/output table. Form ordered pairs from an input/output table. Graph ordered pairs on a coordinate plane.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Understand the place value system.
3. Using models and quantitative reasoning, explain that in a multi-digit number, including decimals, a digit in any place represents ten times what it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
a. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, using whole-number exponents to denote powers of 10.
b. Explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10, using whole-number exponents to denote powers of 10.

Learning Objectives

Prior Knowledge Skills

\square M.5.3.1: Use place value understanding to round whole numbers to the nearest 10 or 100.
\square M.5.3.2: Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using $>,=$, and < symbols to record the results of comparisons.
\square M.5.3.3: Identify that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.
\square Reason and explain the relationship between two successive place values.
\square Explain patterns of zeros of the product when multiplying by powers of 10 .
$\square \quad$ Explain patterns in placement of decimals when multiplying or dividing by power of 10 .
\square Write powers of 10 using exponential notation.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Understand the place value system.
4. *Read, write, and compare decimals to thousandths.
a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form.
b. Compare two decimals to thousandths based on the meaning of the digits in each place, using >, $=$, and < to record the results of comparisons.

Learning Objectives

Prior Knowledge Skills

\square M.5.4.1: Recognize decimals as parts of a whole.
\square M.5.4.2: Compare whole numbers.
M.5.4.3: Write whole numbers in words and expanded form.
\square M.5.4.4: Read whole numbers.
\square M.5.4.5: Define expanded notation and standard form.
\square M.5.4.6: Convert a number written in expanded to standard form.
\square M.5.4.7: Define hundredths and thousandths.
\square M.5.4.8: Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using >, =, and < symbols to record the results of comparisons.
\square M.5.4.9: Identify comparison symbols.
Examples: $>,=$, and $<$.
$\square \quad$ Read and write decimal values in word form, standard form, and expanded form.
\square Compare decimals to thousandths using $<,>$, or $=$.Understand rounding decimals using place value.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Understand the 5. Use place value understanding to round decimals to thousandths.

| place value | Learning Objectives | Prior Knowledge Skills |
| :--- | :--- | :--- | system.

M.5.5.1: Round multi-digit whole numbers $\quad \square$ Use the standard algorithm to find a product. to any place.
\square M.5.5.2: Round whole numbers to the nearest 10 or 100.

Operations with Numbers: Base Ten		
Cluster	2019 Math COS Standard	
Perform operations with multi-digit whole numbers and decimals to hundredths.	6. *Fluently multiply multi-digit whole numbers using the standard algorithm.	
	Learning Objectives	Prior Knowledge Skills
	M.5.6.1: Demonstrate steps in setting up a long multiplication problem. \square M.5.6.2: Multiply 2-digit numbers by 1-digit multiplier.	\square Find whole number quotients and remainders using a variety of strategies based on place value and properties of operations. Illustrate and explain the calculation using equations, arrays, and area mode.
	M.5.6.3: Multiply 1-digit numbers by 1-digit multiplier.	Use concrete models, drawings, and strategies to add, subtract, multiply, and divide decimals.
	\square M.5.6.4: Recall basic multiplication facts. \square M.5.6.5: Recall repeated addition facts.	\square Relate strategies for operations with decimals to a written method and explain reasoning used. \square Solve real-world context problems involving decimals.

Operations with Numbers: Base Ten

Cluster	2019 Math COS Standard

Perform operations with multi-digit whole numbers and decimals to hundredths.
7. *Use strategies based on place value, properties of operations, and/or the relationship between multiplication and division to find whole-number quotients and remainders with up to four-digit dividends and two-digit divisors. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Learning Objectives Prior Knowledge Skills

\square Use concrete models, drawings, and strategies to add, subtract, multiply, and divide decimals.
\square Relate strategies for operations with decimals to a written method and explain reasoning used.
\square Solve real-world context problems involving decimals.

Operations with Numbers: Base Ten

Cluster

Perform operations with multi-digit whole numbers and decimals to hundredths.

2019 Math COS Standard

8. *Add, subtract, multiply, and divide decimals to hundredths using strategies based on place value, properties of operations, and/or the relationships between addition/subtraction and multiplication/division; relate the strategy to a written method, and explain the reasoning used.
a. Use concrete models and drawings to solve problems with decimals to hundredths.
b. Solve problems in a real-world context with decimals to hundredths.

Learning Objectives	Prior Knowledge Skills

\square M.5.8.1: Use decimal notation for fractions with denominators 10 or 100.
\square M.5.8.2: Multiply and divide within 100, using strategies such as the relationship between multiplication and division or properties of operations.
\square M.5.8.3: Add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
\square M.5.8.4: Apply properties of operations as strategies to multiply and divide.
\square M.5.8.5: Identify that 100 can be thought of as a bundle of ten tens, called a "hundred".
\square M.5.8.6: Identify that the numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
\square M.5.8.7: Recall basic addition, subtraction, multiplication, and division facts.
\square Use fraction equivalence to add and subtract fractions and mixed numbers with unlike denominators.
\square Find whole number quotients and remainders using a variety of strategies based on place value and properties of operations.
$\square \quad$ Illustrate and explain the calculation using equations, arrays, and area models.
\square Use concrete models, drawings, and strategies to add, subtract, multiply, and divide decimals.
\square Relate strategies for operations with decimals to a written method and explain reasoning used.
\square Solve real-world context problems involving decimals.

Operations with Numbers: Fractions

Cluster

Use equivalent fractions as a strategy to add and subtract fractions.

2019 Math COS Standard
9. *Model and solve real-word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.

Learning Objectives
 Prior Knowledge Skills

\square M.5.9.1: Add and subtract mixed numbers with like denominators.
\square M.5.9.2: Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square M.5.9.3: Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
\square M.5.9.4: Recognize a fraction as a number on the number line; represent fractions on a number line diagram.
\square M.5.9.5: Recognize key terms to solve word problems.
\square M.5.9.6: Apply properties of operations for addition and subtraction.
\square M.5.9.7: Recall basic addition and subtraction facts.
$\square \quad$ Use fraction equivalence to add and subtract fractions and mixed numbers with unlike denominators.

Operations with Numbers: Fractions

Cluster	2019 Math COS Standard

Use equivalent fractions as a strategy to add and subtract fractions.
10. *Add and subtract fractions and mixed numbers with unlike denominators, using fraction equivalence to calculate a sum or difference of fractions or mixed numbers with like denominators.

Learning Objectives

Prior Knowledge Skills

$\square \quad$ Use fraction equivalence to add and subtract fractions and mixed numbers with unlike denominators.

Operations with Numbers: Fractions

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
11. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers.
a. Model and interpret a fraction as division of the numerator by the denominator ($a / b=a \div b$).
b. Use visual fraction models, drawings, or equations to represent word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers.
Learning Objectives
Prior Knowledge Skills
\square Find products of a fraction times a whole number and products of a fraction times a fraction.
\square M.5.11.2: Generate equivalent fractions.
\square M.5.11.3: Recognize a fraction as a number on the number line; represent fractions on a
\square Use area models, linear models or set models to represent products.

Operations with Numbers: Fractions

Cluster

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

2019 Math COS Standard

12. *Apply and extend previous understandings of multiplication to find the product of a fraction times a whole number or a fraction times a fraction.
a. Use a visual fraction model (area model, set model, or linear model) to show (a/b×q) and create a story context for this equation to interpret the product as a part of a partition of q into b equal parts.
b. Use a visual fraction model (area model, set model, or linear model) to show (a/b) $\times(\mathrm{c} / \mathrm{d})$ and create a story context for this equation to interpret the product.
c. Multiply fractional side lengths to find areas of rectangles and represent fraction products as rectangular areas.
d. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths to show that the area is the same as would be found by multiplying the side lengths.

Learning Objectives	Prior Knowledge Skills

\square M.5.12.1: Define proper fraction.
\square M.5.12.2: Multiply fractions using denominators between 2 and 5 .
\square M.5.12.3: Identify proper and improper fractions.
\square M.5.12.4: Recall basic multiplication facts.
\square M.5.12.5: Model changing a whole number to a fraction.
\square M.5.12.6: Partition a rectangle into rows and columns of same size squares, and count to find the total number of them.
\square M.5.12.7: Label the numerator and denominator of a fraction.
\square M.5.12.8: Count the area squares for the length and width.
\square Solve real-word problems involving multiplication of fractions and mixed numbers.
$\square \quad$ Write equations to represent the word situation.
\square Use visual fraction models to represent the problem.

| | \squareM.5.12.9: Identify the width and length of
 a rectangle. | |
| :--- | :--- | :--- | :--- |

Operations with Numbers: Fractions

Cluster

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

2019 Math COS Standard

13. Interpret multiplication as scaling (resizing).
a. Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
Example: Use reasoning to determine which expression is greater? \qquad .
b. Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number and relate the principle of fraction equivalence.
c. Explain why multiplying a given number by a fraction less than 1 results in a product smaller than the given number and relate the principle of fraction equivalence.

Learning Objectives

Prior Knowledge Skills
\square M.5.13.1: Define scaling.
\square M.5.13.2: Define principle of fraction equivalence.
\square M.5.13.3: Multiply a fraction by a whole number.
\square M.5.13.4: Compare two fractions with the same numerator or the same denominator by reasoning about their size.
\square M.5.13.5: Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square M.5.13.6: Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
\square M.5.13.7: Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers.
\square M.5.13.8: Identify factor and product.
\square M.5.13.9: Use comparison symbols.
Examples: $>,=$, or $<$.
\square Interpret multiplication as scaling.
\square Use reasoning to compare products of multiplication expressions.
$\square \quad$ Reason and explain when multiplying a given number by a fraction why the product will be greater than or less than the original number.

Operations with Numbers: Fractions

Cluster 2019 Math COS Standard

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
14. *Model and solve real-world problems involving multiplication of fractions and mixed numbers using visual fraction models, drawings, or equations to represent the problem.
\square M.5.14.1: Define improper fraction, mixed number, fraction, equations, numerator, denominator.
\square M.5.14.2: Multiply proper fractions with common denominators 2-10.
\square M.5.14.3: Solve problems using whole numbers.
\square M.5.14.4: Write number sentences for word problems.
\square M.5.14.5: Identify key terms to solve multiplication word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square M.5.14.6: Recall basic multiplication facts.

Operations with Numbers: Fractions

Cluster

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

2019 Math COS Standard

15. *Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
a. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions and illustrate using visual fraction models, drawings, and equations to represent the problem.
b. Create a story context for a unit fraction divided by a whole number, and use a visual fraction model to show the quotient.
c. Create a story context for a whole number divided by a unit fraction, and use a visual fraction model to show the quotient.

Learning Objectives

\square M.5.15.1: Define quotient.
\square M.5.15.2: Multiply a fraction by a whole number.
\square M.5.15.3: Recognize key terms to solve word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square M.5.15.4: Recall basic multiplication and division facts.
\square M.5.15.5: Express whole numbers as fractions.
\square M.5.15.6: Recognize fractions that are equivalent to whole numbers.
\square M.5.15.7: Recall basic multiplication and division facts.
\square M.5.15.8: Solve word problems involving multiplication of a fraction by a whole number.
\square M.5.15.9: Recognize key terms to solve word problems.

Prior Knowledge Skills

\square Find products of a fraction times a whole number and products of a fraction times a fraction.
\square Use area models, linear models or set models to represent products.
\square Create a story context to represent equations $(a / b) \times q$ and $(a / b) \times$ (c/d) to interpret products.
\square Find area of rectangles with fractional side lengths and represent products as rectangular areas.
\square Find the area of a rectangle by tiling the area of a rectangle with unit squares.

| | \squareM.5.15.10: Recall basic multiplication and
 division facts. | |
| :--- | :--- | :--- | :--- |

Data Analysis

Cluster
Represent and

2019 Math COS Standard

16. Make a line plot to display a data set of measurements in fractions of a unit $1 / 2,1 / 4,1 / 8$.
a. Add, subtract, multiply, and divide fractions to solve problems involving information presented in line plots.
Note: Division is limited to unit fractions by whole numbers and whole numbers by unit fractions.

Learning Objectives

Prior Knowledge Skills

\square M.5.16.1: Make a line plot to display a data
\square Recall the meaning of a fraction as part of a whole. set of measurements in fractions of a unit.
\square M.5.16.2: Solve problems involving addition and subtraction of fractions by using information presented in line plots.Identify the location of a fraction on a number line.Compare fractions by finding common denominators.Find an unknown value to complete a number sentence.
\square M.5.16.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories.
\square M.5.16.4: Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.
\square M.5.16.5: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories.
\square M.5.16.6: Solve simple put-together, takeapart, and compare problems using information presented in a bar graph.

Measurement

Cluster
Convert like
measurement
units within a
given
measurement
system.

2019 Math COS Standard
17. *Convert among different-sized standard measurement units within a given measurement system and use these conversions in solving multi-step, real-world problems.

Learning Objectives

\square M.5.17.1: Identify relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml ; and hr, min, sec.
\square M.5.17.2: Express measurements in a larger unit in terms of a smaller unit.
\square M.5.17.3: Solve two-step word problems.
\square M.5.17.4: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I).
\square M.5.17.5: Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.
\square M.5.17.6: Recall basic addition, subtraction, multiplication, and division facts.

Prior Knowledge Skills

$\square \quad$ Create a line plot with appropriate intervals.
$\square \quad$ Represent data on a line plot.
\square Apply strategies for solving problems involving all four operations with the fractional data.
$\square \quad$ Convert measurement units.
\square Solve multi-step word problems involving measurement conversions.

Measurement

Cluster

Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition.

2019 Math COS Standard

18. Identify volume as an attribute of solid figures, and measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised (non-standard) units.
a. Pack a solid figure without gaps or overlaps using n unit cubes to demonstrate volume as n cubic units.

Learning Objectives

\square M.5.18.1: Define volume including the formulas $V=I \times w \times h$, and $V=B \times h$.
\square M.5.18.2: Define solid figures.
\square M.5.18.3: Define unit cube.
\square M.5.18.4: Recognize that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals).
\square M.5.18.5: Describe attributes of threedimensional figures.
\square M.5.18.6: Describe attributes of twodimensional figures.
\square M.5.18.7: Compare the unit size of volume/capacity in the metric system including milliliters and liters.
\square M.5.18.8: Define cubic inches, cubic centimeters, and cubic feet.
\square M.5.18.9: Compare the unit size of volume/capacity in the customary system including fluid ounces, cups, pints, quarts, gallons.
\square M.5.18.10: Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).

Prior Knowledge Skills

\square Count unit cubes to find volume.
\square Demonstrate volume by packing a solid figure with unit cubes.
\square Solve word problems involving volume.
\square Use associative property of multiplication to find volume.
\square Relate operations of multiplication and addition to finding volume.
\square Apply formulas to find volume of right rectangular prisms.
\square Find volume of solid figures composed of two rectangular prisms.

\begin{tabular}{|c|c|c|c|c|}
\hline \& \square
\square
\square

\square \& \& \& | : Measure and estimate liquid nd masses of objects using units of grams (g), kilograms (kg), (I). |
| :--- |
| : Add, subtract, multiply, or divide e-step word problems involving volumes that are given in the s, e.g., by using drawings (such as with a measurement scale) to the problem. |
| Recall basic multiplication facts. : Fluently add. |

\hline
\end{tabular}

Measurement

Cluster

Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition.

2019 Math COS Standard

19. *Relate volume to the operations of multiplication and addition, and solve real-world and mathematical problems involving volume.
a. Use the associative property of multiplication to find the volume of a right rectangular prism and relate it to packing the prism with unit cubes. Show that the volume can be determined by multiplying the three edge lengths or by multiplying the height by the area of the base.
b. Apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.
c. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the two parts, applying this technique to solve real-world problems.

Learning Objectives

M.5.19.1: Define volume.
\square M.5.19.2: Recognize angle measure as additive.
\square M.5.19.3: Apply the area and perimeter formulas for rectangles in real-world and mathematical problems.
\square M.5.19.4: Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
\square M.5.19.5: Recognize the formula for volume.
\square M.5.19.6: Recall the attributes of threedimensional solids.
\square M.5.19.7: Recall basic multiplication facts.

Prior Knowledge Skills

\square Count unit cubes to find volume.
\square Demonstrate volume by packing a solid figure with unit cubes.
\square Convert measurement units.
\square Solve multi-step word problems involving measurement conversions.

Geometry		
Cluster	2019 Math COS Standard	
Graph points on the coordinate	20. *Graph points in the first quadrant of the coordinate plane, and interpret coordinate values of points to represent real-world and mathematical problems.	
plane to solve real-	Learning Objectives	Prior Knowledge Skills
world and mathematical problems.	\square M.5.20.1: Define ordered pair of numbers, quadrant one, coordinate plane, and plot points. M.5.20.2: Label the horizontal axis (x). M.5.20.3: Label the vertical axis (y). M.5.20.4: Identify the x and y values in ordered pairs. \square M.5.20.5: Model writing ordered pairs.	\square Graph points in the first quadrant. \square Interpret coordinate values in context of the problem.

Geometry		
Cluster	2019 Math COS Standard	
Classify twodimensional	21. Classify triangles according to side length (isosceles, equilateral, scalene) and angle measure (acute, obtuse, right, equiangular).	
figures into	Learning Objectives	Prior Knowledge Skills
categories based on their properties.	\square M.5.21.1: Define isosceles, equilateral, scalene, right and equiangular triangles; obtuse, acute, and right angle; vertex/vertices. M.5.21.2: Identify a right triangle. M.5.21.3: Sort and categorize shapes. M.5.21.4: Recognize and draw shapes having specified attributes.	Recall the vocabulary of shapes (labels, sides, faces, vertices, etc.) Recognize and draw shapes having specified attributes such as a given number of angles. Build and draw shapes to possess defining attributes. Sort shapes into categories. Define side, angle, face, closed, and open. Use vocabulary related to shape attributes. Examples: sides, angles, face, closed, open. Trace shapes. Sort triangles, quadrilaterals, pentagons, hexagons, and cubes. \square Explore triangles, quadrilaterals, pentagons, hexagons, and cubes.

Geometry		
Cluster	2019 Math COS Standard	
Classify twodimensional figures into categories based on their properties.	22. Classify quadrilaterals in a hierarchy based on properties.	
	Learning Objectives	Prior Knowledge Skills
	M.5.22.1: Define vertex/vertices and angle. M.5.22.2: Identify shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). M.5.22.3: Recognize and draw shapes having specified attributes such as a given number of angles or a given number of equal faces. \square M.5.22.4: Identify triangles, quadrilaterals, pentagons, hexagons, heptagons, and octagons based on the number of sides, angles, and vertices.	\square Classify triangles according to side measures and angle measures.

Geometry

| Cluster |
| :--- | :--- |
| Classify two- |
| dimensional |
| figures into |
| categories based |
| on their | on their properties.

2019 Math COS Standard

23. Explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.
Example: All rectangles have four right angles, and squares have four right angles, so squares are rectangles.

Learning Objectives

Prior Knowledge Skills

\square M.5.23.1: Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared

Classify triangles according to side measures and angle measures.Classify quadrilaterals based on properties.Explain the relationship between shapes in categories and subcategories.
quadrilaterals).
\square M.5.23.2: Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
\square M.5.23.3: Recognize attributes of shapes.M.5.23.4: Recall the vocabulary of shapes (labels, sides, faces, vertices, etc.).
M.5.23.5: Sort shapes into categories.

Grade 6

Proportional Reasoning

Cluster	2019 Math COS Standard

Develop an understanding of ratio concepts and use reasoning about ratios to solve problems.

1. *Use appropriate notations $[a / b, a$ to $b, a: b]$ to represent a proportional relationship between quantities and use ratio language to describe the relationship between quantities.

Learning Objectives Prior Knowledge Skills

\square M.6.1.1: Define quantity, fraction, and ratio.
\square M.6.1.2: Identify the units or quantities being compared.
Example: Read $2 / 3$ as 2 out of 3 .
\square M.6.1.3: Write a ratio in appropriate notation; [a/b, a to $b, a: b]$.
\square M.6.1.4: Draw a model of a given ratio or fraction.
\square M.6.1.5: Identify the numerator and denominator of a fraction.
\square Compare two fractions with the same numerator or the same denominator by reasoning about their size.
\square Addition and subtraction of fractions as joining and separating parts referring to the same whole.
\square Label numerator, denominator, and fraction bar.
\square Recognize fraction 1 as the quantity formed by 1 part when a whole is partitioned into b equal parts.

Proportional Reasoning

Cluster
Develop an
understanding of

2019 Math COS Standard
2. *Use unit rates to represent and describe ratio relationships.
Learning Objectives \quad Prior Knowledge SkillsM.6.2.1: Define unit rate, proportion, and rate.
$\square \quad$ M.6.2.2: Create a ratio or proportion from a given word problem.
\square M.6.2.3: Calculate unit rate by using ratios or proportions
\square M.6.2.4: Write a ratio as a fraction.Recall basic multiplication facts.Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problemRecognize key terms to solve word problems.
Examples: times, every, at this rate, each, per, equal/equally, in all, total.Recognize a fraction as a number on the number line.
Label numerator, denominator, and fraction bar.

Proportional Reasoning

Cluster

Develop an understanding of ratio concepts and use reasoning about ratios to solve problems.

2019 Math COS Standard
3. *Use ratio and rate reasoning to solve mathematical and real-world problems (including but not limited to percent, measurement conversion, and equivalent ratios) using a variety of models, including tables of equivalent ratios, tape diagrams, double number lines, and equations.

Learning Objectives
$\square \square$ M.6.3.1: Define ratio, rate, proportion,

Prior Knowledge Skills

\square Recognize arithmetic patterns (including geometric patterns or patterns in the addition table or multiplication table). pairs, diagram, unit rate, and table.
\square M.6.3.2: Create a ratio or proportion from a given word problem, diagram, table, or equation.
\square M.6.3.3: Calculate unit rate or rate by using ratios or proportions with or without a calculator.
\square M.6.3.4: Restate real world problems or mathematical problems.
\square M.6.3.5: Construct a graph from a set of ordered pairs given in the table of equivalent ratios.
\square M.6.3.6: Calculate missing input and/or output values in a table with or without a calculator.
\square M.6.3.7: Draw and label a table of equivalent ratios from given information.
\square M.6.3.8: Identify the parts of a table of equivalent ratios (input, output, etc.).
\square M.6.3.9: Compute the unit rate, unit price, and constant speed with or without a calculator.
\square M.6.3.10: Create a proportion or ratio from a given word problem.

Examples: Continued Geometric Pattern by drawing the next three shapes.
\square Complete the numerical pattern for the following chart when given the rule, "Input + 5 = Output".
\square Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.
\square Recognize key terms to solve word problems.
Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square Recall basic multiplication facts.
\square Recognize equivalent forms of fractions and decimals.
\square Recognize a fraction as a number on the number line.
\square Label numerator, denominator, and fraction bar.

Number Systems and Operations		
Cluster	2019 Math COS Standard	
Use prior knowledge of multiplication and division to divide fractions.	4. Interpret and compute quotients of fractions using visual models and equations to represent problems. a. Use quotients of fractions to analyze and solve problems.	
	Learning Objectives	Prior Knowledge Skills
	\square M.6.4.1: Define fraction (including numerator and denominator), reciprocal, equation, and quotient. M.6.4.2: Construct an equation from a given word problem. \square M.6.4.3: Discuss the process of multiplying by the reciprocal. M.6.4.4: Interpret division of fractions by multiplying by the reciprocal. M.6.4.5: Demonstrate division of fractions using a visual fraction model. M.6.4.6: Demonstrate multiplication of fractions using a visual fraction model.	Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Write number sentences for word problems. Identify key terms to solve multiplication word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total. Recall basic multiplication facts. Recognize key terms to solve word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total. Label numerator, denominator, and fraction bar. Recognize a fraction as a number on the number line.

Number Systems and Operations		
Cluster	2019 Math COS Standard	
Compute multidigit numbers	5. Fluently divide multi-digit whole numbers using a standard algorithm to solve real-world and mathematical problems.	
fluently and	Learning Objectives	Prior Knowledge Skills
determine common factors and multiples.	M.6.5.1: Define factors and multiples. M.6.5.2: Discuss the steps for solving a division problem. \square M.6.5.3: Recognize division and multiplication as inverse operations. M.6.5.4: Recall basic division and multiplication facts. M.6.5.5: Solve real-world division problems with and without models or a calculator.	Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Write number sentences for word problems. Identify key terms to solve multiplication word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total. Recall basic multiplication facts. Recognize key terms to solve word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total. Label numerator, denominator, and fraction bar. Recognize a fraction as a number on the number line.

Number Systems and Operations

Cluster

Compute multidigit numbers fluently and determine common factors and multiples.

2019 Math COS Standard

6. Add, subtract, multiply, and divide decimals using a standard algorithm.

Learning Objectives

M.6.6.1: Solve division problems involving multi-digit whole numbers and decimal numbers with or without a calculator.
\square M.6.6.2: Solve multiplication problems involving multi-digit whole numbers and decimal numbers with or without a calculator.
\square M.6.6.3: Recall basic multiplication and division facts.
\square M.6.6.4: Solve addition and subtraction of multi-digit decimal numbers (emphasis on alignment).
\square M.6.6.5: Solve addition and subtraction of multi-digit whole numbers.
\square M.6.6.6: Recognize place value of whole numbers and decimals.
\square M.6.6.7: Demonstrate addition, subtraction, multiplication, and division of whole numbers and decimals using manipulatives.

Prior Knowledge Skills

Recall basic multiplication facts.Recall basic addition, subtraction, multiplication, and division facts.Use place value understanding to round whole numbers to the nearest 10 or 100.Identify place value of decimals to the tenths and hundredths.Recall basic addition and subtraction facts.Recall basic addition and subtraction facts.Recall basic addition, subtraction, and multiplication factsMultiply within 100, using strategies such as the relationship between multiplication and division.
\square Multiply within 100, using strategies such as properties of operations.
\square Divide within 100, using strategies such as properties of operations.
\square Divide within 100, using strategies such as the relationship between multiplication and division.
\square Add and subtract within 1000 .

Number Systems and Operations		
Cluster	2019 Math COS Standard	
Compute multidigit numbers fluently and determine common factors and multiples.	7. Use the distributive property to express the sum of two whole numbers with a common factor as a multiple of a sum of two whole numbers with no common factor.	
	Learning Objectives	Prior Knowledge Skills
	\square M.6.7.1: Define greatest common factor, least common multiple, and the distributive property. \square M.6.7.2: Design problems using greatest common factor and the distributive property. \square M.6.7.3: Show an understanding of how to solve a problem using the distributive property, with or without the use of a calculator.	Identify factor and product. Explain why addition and subtraction strategies work, using place value and the properties of operations. \square Apply properties of operations as strategies to multiply and divide.

Number Systems and Operations

Cluster

Compute multidigit numbers fluently and determine common factors and multiples.

2019 Math COS Standard
8. Find the greatest common factor (GCF) and least common multiple (LCM) of two or more whole numbers.
a. Use factors and multiples to determine prime factorization.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.6.8.1: Identify the least common multiple of a given set of numbers, with or without the use of a calculator.
\square M.6.8.2: List multiples of any given whole number, with or without the use of a calculator.
\square M.6.8.3: Identify the greatest common factors of a given set of numbers, with or without the use of a calculator.
\square M.6.8.4: Define prime factorization.
\square M.6.8.5: List common factors of given whole numbers, with or without the use of a calculator.
\square M.6.8.6: Identify the prime factorization of a single digit number, with or without the use of a calculator.
\square M.6.8.7: Identify the prime factorization of any two digit whole number, with or without the use of a calculator.
\square Define Multiple.
\square
Name the first ten multiples of each one-digit natural number.
\square Name the first 10 multiples of each one-digit natural number. Example: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70.
\square Count within 1000; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s.Recall basic multiplication facts.Name the first ten multiples of each one-digit natural number.Identify all factor pairs for a whole number in the range 1-20.Apply properties of operations as strategies to multiply and divide.Define factors, prime number, and composite number.

Number Systems and Operations

Cluster	2019 Math COS Standard

Apply knowledge of the number system to represent and use rational numbers in a variety of forms.

2019 Math COS Standard
9. Use signed numbers to describe quantities that have opposite directions or values and to represent quantities in real-world contexts.

Learning Objectives
 \square M.6.9.1: Give examples of positive and

 negative numbers to represent quantities having opposite directions in real-world contexts.\square M.6.9.2: Discover that the opposite of the opposite of a number is the number itself.
\square M.6.9.3: Show on a number line that numbers that are equal distance from 0 and on opposite sides of 0 have opposite signs.

Prior Knowledge Skills

\square Locate positive numbers on a horizontal number line.
\square Locate positive numbers on a vertical number line. Examples: thermometer, map.
\square Recognize different interpretations of fractions, including parts of a set or a collection, points on a number line, numbers that lie between two consecutive whole numbers, and lengths of segments on a ruler.Represent fractions on a number line diagram.Recognize a fraction as a number on the number line.Identify a fraction as a number on the number line; represent fractions on a number line diagram.

Number Systems and Operations

Cluster

Apply knowledge of the number system to represent and use rational numbers in a variety of forms.

2019 Math COS Standard

10. *Locate integers and other rational numbers on a horizontal or vertical line diagram.
a. Define opposites as numbers located on opposite sides of 0 and the same distance from 0 on a number line.
b. Use rational numbers in real-world and mathematical situations, explaining the meaning of 0 in each situation.

Learning Objectives	Prior Knowledge Skills

\square M.6.10.1: Define integers, positive and negative numbers.
\square M.6.10.2: Demonstrate the location of positive and negative numbers on a vertical and horizontal number line.
\square M.6.10.3: Give examples of positive and negative numbers to represent quantities having opposite directions in real-world contexts.
\square M.6.10.4: Discuss the measure of centering of 0 in relationship to positive and negative numbers.
\square M.6.10.5: Discover that the opposite of the opposite of a number is the number itself.
\square M.6.10.6: Show on a number line that numbers that are equal distance from 0 and on opposite sides of 0 have opposite signs.
\square M.6.10.7: Define rational number.
\square M.6.10.8: Plot pairs of integers and/or rational numbers on a coordinate plane.
\square M.6.10.9: Arrange integers and /or rational numbers on a horizontal or vertical number line.

Prior Knowledge Skills

\square Model writing ordered pairs.
$\square \quad$ Identify the x and y values in ordered pairs.
$\square \quad$ Label the vertical axis (y).Label the horizontal axis (x).Define ordered pair of numbers, quadrant one, coordinate plane, and plot points.
$\square \quad$ Locate positive numbers on a vertical number line.
Examples: thermometer, map.
\square Locate positive numbers on a horizontal number line.Locate negative numbers on a horizontal number line.Label x - and y-axis and zero on a coordinate.Illustrate vertical and horizontal number lines.
\square Specify locations on the coordinate system.Define x-axis, y-axis, and zero on a coordinate.Define ordered pair of numbers.
\square Define parentheses, braces, and brackets.

| | \squareM.6.10.10: Locate the position of integers
 and/or rational numbers on a horizontal or
 vertical number line. |
| :--- | :--- | :--- | :--- |
| \squareM.6.10.11: Identify a rational number as a
 point on the number line. | |
| \squareM.6.10.12: Name the pairs of integers and
 /or rational numbers of a point on a
 coordinate plane. | |

Number Systems and Operations

Cluster

Apply knowledge of the number system to represent and use rational numbers in a variety of forms.

2019 Math COS Standard

11. *Find the position of pairs of integers and other rational numbers on the coordinate plane.
a. Identify quadrant locations of ordered pairs on the coordinate plane based on the signs of the x and y coordinates.
b. Identify (a, b) and ($a,-b$) as reflections across the x-axis.
c. Identify (a, b) and $(-a, b)$ as reflections across the y-axis.
d. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane, including finding distances between points with the same first or second coordinate.

Learning Objectives

\square M.6.11.1: Define quadrant, coordinate plane, coordinate axes (x-axis and y-axis), horizontal, vertical, and reflection.
\square M.6.11.2: Demonstrate an understanding of an extended coordinate plane.
\square M.6.11.3: Draw a four-quadrant coordinate plane.
\square M.6.11.4: Draw and extend vertical and horizontal number lines.
\square M.6.11.5: Interpret graphing points in all four quadrants of the coordinate plane in real-world situations.
\square M.6.11.6: Recall how to graph points in all four quadrants of the coordinate plane.
\square M.6.11.7: Define ordered pairs.
\square M.6.11.8: Name the pairs of integers and/or rational numbers of a point on a coordinate plane.
\square M.6.11.9: Demonstrate when two ordered pairs differ only by signs, the locations of

Prior Knowledge Skills

\square Model writing ordered pairs.Identify the x and y values in ordered pairs.
Label the vertical axis (y).Label the horizontal axis (x).Define ordered pair of numbers, quadrant one, coordinate plane, and plot points.
\square Locate positive numbers on a vertical number line. Examples: thermometer, map.
\square Locate positive numbers on a horizontal number line.Locate negative numbers on a horizontal number line.Label x - and y-axis and zero on a coordinate.
Illustrate vertical and horizontal number lines.Specify locations on the coordinate system.Define x-axis, y-axis, and zero on a coordinate.Define ordered pair of numbers.Locate positive numbers on a horizontal number line.Locate negative numbers on a horizontal number line.Define symmetry.
\square Identify lines of symmetry on one-dimensional figures.

| | the points are related by reflections across
 one or both axes.
 \square
 M.6.11.10: Identify which signs indicate the
 location of a point in a coordinate plane.
 \square
 M.6.11.11: Recall how to plot ordered pairs
 on a coordinate plane. |
| :--- | :--- | :--- | :--- |
| \squareM.6.11.12: Define reflections.
 \square M.6.11.13: Calculate the distances
 between points having the same first or
 second coordinate using absolute value. | |

Number Systems and Operations		
Cluster	2019 Math COS Standard	
Apply knowledge of the number	12. *Explain the meaning of absolute value and determine the absolute value of rational numbers in realworld contexts.	
system to	Learning Objectives	Prior Knowledge Skills
represent and use rational numbers in a variety of forms.	M.6.12.1: Define absolute value and rational numbers. M.6.12.2: Recall how to order numbers. M.6.12.3: Give examples of the magnitude for a positive or negative quantity in a realworld situation using absolute value. \square M.6.12.4: Recognize the absolute value of a rational number is its' distance from 0 on a vertical and horizontal number line.	Model writing ordered pairs. Identify the x and y values in ordered pairs. Label the vertical axis (y). Label the horizontal axis (x). Define ordered pair of numbers, quadrant one, coordinate plane, and plot points.

Number Systems and Operations

Cluster	2019 Math COS Standard

Apply knowledge of the number system to represent and use rational numbers in a variety of forms.

2019 Math COS Standard

13. *Compare and order rational numbers and absolute value of rational numbers with and without a number line in order to solve real-world and mathematical problems.

Learning Objectives
 Prior Knowledge Skills

M.6.13.1: Define rational number.\square M.6.13.2: Plot pairs of integers and/or rational numbers on a coordinate plane.
\square M.6.13.3: Arrange integers and/or rational numbers on a horizontal or vertical number line.
\square M.6.13.4: Locate the position of integers and/or rational numbers on a horizontal or vertical number line.
\square M.6.13.5: Evaluate a statement about order using comparisons of absolute value.
\square M.6.13.6: Recall how to order positive and negative numbers. (Use number line if needed.).
\square Locate positive numbers on a vertical number line. Examples: thermometer, map.
$\square \quad$ Locate positive numbers on a horizontal number line.Locate negative numbers on a horizontal number line.Label x - and y-axis and zero on a coordinate.Illustrate vertical and horizontal number lines.Specify locations on the coordinate system.Define x-axis, y-axis, and zero on a coordinate.Define ordered pair of numbers.
\square Interpret data using graphs including bar, line, and circle graphs, and Venn diagrams.
$\square \quad$ Display data by making a line plot where the horizontal scale is marked off in appropriate units whole numbers, halves, or quarters.

Algebra and Functions

Cluster	2019 Math COS Standard	
Apply knowledge of arithmetic to read, write, and evaluate algebraic expressions.	14. Write, evaluate, and compare expressions involving whole number exponents.	
	Learning Objectives	Prior Knowledge Skills
	\square M.6.14.1: Define exponent, numerical expression, algebraic expression, variable, base, power, square of a number, and cube of a number. \square M.6.14.2: Compute a numerical expression with exponents, with or without a calculator. \square M.6.14.3: Restate exponential numbers as repeated multiplication. \square M.6.14.4: Choose the correct value to replace each variable in the expression (Substitution). \square M.6.14.5: Calculate the multiplication of single or multi-digit whole numbers, with or without a calculator.	\square Product, power of 10 . Recognize decimal place value using visual representations. Recall multiplication and division facts of 10. Skip count forward and backward by 10. Recognize decimals as parts of a whole. Compare whole numbers. Read whole numbers. Write whole numbers in words and expanded form. Define expanded notation and standard form. Convert a number written in expanded to standard form. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. Recall basic multiplication facts. Recall basic addition, subtraction, multiplication, and division facts.

Algebra and Functions

Cluster

Apply knowledge of arithmetic to read, write, and evaluate algebraic expressions.

2019 Math COS Standard

15. *Write, read, and evaluate expressions in which letters represent numbers in real-world contexts.
a. Interpret a variable as an unknown value for any number in a specified set, depending on the context.
b. Write expressions to represent verbal statements and real-world scenarios.
c. Identify parts of an expression using mathematical terms such as sum, term, product, factor, quotient, and coefficient.
d. Evaluate expressions (which may include absolute value and whole number exponents) with respect to order of operations.

Learning Objectives

\square M.6.15.1: Define algebraic expression and variable.
\square M.6.15.2: Convert mathematical terms to mathematical symbols and numbers.
\square M.6.15.3: Translate verbal and numerical expression using all operations.
\square M.6.15.4: Define coefficient, constant and term.
\square M.6.15.5: Match mathematical terms with correct mathematical symbols.
\square M.6.15.6: Convert mathematical terms to mathematical symbols and numbers.
\square M.6.15.7: Calculate an expression in the correct order. with or without a calculator (Ex. exponents, mult./div. from left to right, and add/sub. from left to right).
\square M.6.15.8: Choose the correct value to replace each variable in the algebraic expression (Substitution).

Prior Knowledge Skills

\square Recognize key terms to solve word problems.
Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square Recognize key terms to solve word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total.
\square Define simple expression.
\square Recall simple equations.
\square Recognize properties of addition and multiplication.
\square Recall addition, subtraction, multiplication, division symbols.
\square Define parentheses, braces, and brackets.
\square Define numerical expression.
\square Recognize expressions.
\square Apply properties of operations as strategies to add and subtract.
\square Recall properties of operations as strategies to add and subtract.
\square Represent addition and subtraction with objects, mental images, drawings, expressions, or equations.
\square Use addition, subtraction, multiplication, and division to solve one- and two-step word problems.
\square Recognize key terms to solve word problems.

*ritical Standard

\square
\square M.6.15.9: Calculate a numerical expression, with or without a calculator (Ex. V=4x4x4).
\square M.6.15.10: Recognize the correct order to solve expressions with more than one operation.
$\square \quad$ Apply properties of operations as strategies to multiply and divide.
\square Apply the area and perimeter formulas for rectangles in real world and mathematical problems.
\square Recall the formula for area (LXW).
\square Recognize that unit squares are equal.
\square Recall the formula for perimeter ($\mathrm{P}=\mathrm{L}+\mathrm{L}+\mathrm{W}+\mathrm{W}$ or $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$)
\square Recall basic addition and multiplication facts.

Algebra and Functions

Cluster	2019 Math COS Standard	
Apply knowledge of arithmetic to read, write, and evaluate algebraic expressions.	16. *Generate equivalent algebraic expressions using the properties of operations, including inverse, identity, commutative, associative, and distributive.	
	Learning Objectives	Prior Knowledge Skills
	M.6.16.1: Define equivalent, simplify, term, distributive property, associative property of addition and multiplication, and the commutative property of addition and multiplication. M.6.16.2: Simplify expressions with parentheses (Ex. $5(4+x)=20+5 x)$. M.6.16.3: Combine terms that are alike of a given expression. M.6.16.4: Recognize the property demonstrated in a given expression. M.6.16.5: Simplify an expression by dividing by the greatest common factor. Example: $18 x+6 y=6(3 x+y)$. M.6.16.6: Determine the greatest common factor in an algebraic expression.	Define parentheses, braces, and brackets. Define numerical expression. Recognize expressions. Apply properties of operations as strategies to add and subtract. Recall properties of operations as strategies to add and subtract. Represent addition and subtraction with objects, mental images, drawings, expressions, or equations. Define simple expression. Recall simple equations. Recognize properties of addition and multiplication. Recall addition, subtraction, multiplication, division symbols. Use addition, subtraction, multiplication, and division to solve oneand two-step word problems. Apply properties of operations as strategies to multiply and divide.

Algebra and Functions

Cluster	2019 Math COS Standard	
Apply knowledge of arithmetic to read, write, and evaluate algebraic expressions.	17. Determine whether two expressions are equivalent and justify the reasoning.	
	Learning Objectives	Prior Knowledge Skills
	M.6.17.1: Define equivalent expressions. M.6.17.2: Recognize equivalent expressions. M.6.17.3: Substitute for the variable to find the value of a given expression. M.6.17.4: Calculate a numerical expression. M.6.17.5: Recognize that a variable without a written coefficient is understood to have a coefficient of one. (Ex. $x=1 x$).	Use comparison symbols. Examples: >, =, or < . Record the results of comparisons with the symbols $>==$, or $<$, and justify the conclusions, e.g., by using a visual fraction model. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using $>==$, and $<$ symbols to record the results of comparisons. Comparison symbols. Examples: $>,=$, and $<$. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using $>,=$, and < symbols to record the results of comparisons. Compare two fractions with the same numerator or the same denominator by reasoning about their size. \square Recognize that comparisons are valid only when the two fractions refer to the same whole. \square Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model. Convert fractions to decimals. \square Compare two decimals to tenths. \square Compare whole numbers. \square Identify comparison symbols. Examples: $>,<$, and $=$.

Algebra and Functions

Cluster

Use equations and inequalities to represent and solve real-world or mathematical problems.

2019 Math COS Standard

18. Determine whether a value is a solution to an equation or inequality by using substitution to conclude whether a given value makes the equation or inequality true.

Learning Objectives

\square M.6.18.1: Define exponent, numerical expression, algebraic expression, variable, base, power, square of a number, and cube of a number.
\square M.6.18.2: Compute a numerical expression with exponents, with or without a calculator.
\square M.6.18.3: Restate exponential numbers as repeated multiplication.
\square M.6.18.4: Choose the correct value to replace each variable in the expression (Substitution).
\square M.6.18.5: Calculate the multiplication of single or multi-digit whole numbers, with or without a calculator.

Prior Knowledge Skills

Use comparison symbols. Examples: >, =, or < .Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using >, $=$, and < symbols to record the results of comparisons.Comparison symbols. Examples: $>,=$, and $<$.Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using $>$, $=$, and $<$ symbols to record the results of comparisons.\square Compare two fractions with the same numerator or the same denominator by reasoning about their size.
$\square \quad$ Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square Record the results of comparisons with the symbols $>$, =, or $<$, and justify the conclusions, e.g., by using a visual fraction model.Convert fractions to decimals.Compare two decimals to tenths.Compare whole numbers.Identify comparison symbols. Examples: >, <, and =.

Algebra and Functions

Cluster	2019 Math COS Standard	
Use equations and inequalities to represent and solve real-world or mathematical problems.	19. *Write and solve an equation in the form of $x+p=q$ or $p x=q$ for cases in which p, q, and x are all nonnegative rational numbers to solve real-world and mathematical problems. a. Interpret the solution of an equation in the context of the problem.	
	Learning Objectives	Prior Knowledge Skills
	M.6.19.1: Define equation and variable. M.6.19.2: Set up an equation to represent the given situation, using correct mathematical operations and variables. M.6.19.3: Solve the equation represented by the real-world situation. M.6.19.4: Identify the unknown variable in a given situation. M.6.19.5: List given information from the problem. M.6.19.6: Explain the solution in the context of the problem.	\square Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. Recognize key terms to solve word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total. Define simple expression. Recall simple equations. Recognize properties of addition and multiplication. Recall addition, subtraction, multiplication, division symbols. Define parentheses, braces, and brackets. Define numerical expression. Recognize expressions. Apply properties of operations as strategies to add and subtract. Recall properties of operations as strategies to add and subtract. Represent addition and subtraction with objects, mental images, drawings, expressions, or equations.

Algebra and Functions

Cluster

Use equations and inequalities to represent and solve real-world or mathematical problems.

2019 Math COS Standard

20. Write and solve inequalities in the form of $x>c, x<c, x \geq c$, or $x \leq c$ to represent a constraint or condition in a real-world or mathematical problem.
a. Interpret the solution of an inequality in the context of a problem.
b. Represent the solutions of inequalities on a number line and explain that the solution set may contain infinitely many solutions.

Learning Objectives

Prior Knowledge Skills

\square M.6.20.1: Define inequality and solution set of an inequality.
\square M.6.20.2: Set up an inequality to represent the given situation, using correct mathematical operations and variable.
\square M.6.20.3: Identify solution set for the inequality used to represent the situation.
\square M.6.20.4: Recognize the inequality symbols; $<,>,<,>,=,>,<, \leq$, and \geq.
\square M.6.20.5: Construct and label a number line.
\square M.6.20.6: Graph the solution set on a number line for the inequality used to represent the situation.

Use comparison symbols. Examples: >, =, or <.Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits using >, =, and < symbols to record the results of comparisons.
\square Comparison symbols. Examples: >, =, and <
\square Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits.
\square Compare using >, $=$, and < symbols to record the results of comparisons.
\square Compare two fractions with the same numerator or the same denominator by reasoning about their size.
\square Recognize that comparisons are valid only when the two fractions refer to the same whole.
\square Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.Convert fractions to decimals.Compare two decimals to tenths.Compare whole numbers.Identify comparison symbols. Examples: $>,<$, and $=$.

Algebra and Functions		
Cluster	2019 Math COS Standard	
Identify and analyze relationships between independent and dependent variables.	21. *Identify, represent, and analyze two quantities that change in relationship to one another in realworld or mathematical situations. a. Use tables, graphs, and equations to represent the relationship between independent and dependent variables.	
	Learning Objectives	Prior Knowledge Skills
	\square M.6.21.1: Define dependent variable, independent variable, ordered pairs, input, output, and coordinate plane. M.6.21.2: Examine the graph and table to determine any relationship between the variables. M.6.21.3: Recall how to draw a number line. M.6.21.4: Draw and label a coordinate plane. \square M.6.21.5: Analyze the pattern represented by the values in the table and develop an equation to express the relationship. M.6.21.6: Relate the table and graph to the equation. M.6.21.7: Plot independent (input) and dependent (output) values on a coordinate plane. M.6.21.8: Create a table of independent and dependent values from the equation.	Model writing ordered pairs. Identify the x and y values in ordered pairs. Label the vertical axis (y). Label the horizontal axis (x). Define ordered pair of numbers, quadrant one, coordinate plane, and plot points. Locate positive numbers on a vertical number line. Examples: thermometer, map. Locate positive numbers on a horizontal number line. Locate negative numbers on a horizontal number line. Label x - and y-axis and zero on a coordinate. Illustrate vertical and horizontal number lines. Specify locations on the coordinate system. Define x-axis, y-axis, and zero on a coordinate. Define ordered pair of numbers. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. Recognize key terms to solve word problems. Examples: times, every, at this rate, each, per, equal/equally, in all, total. Recognize that comparisons are valid only when the two fractions refer to the same whole. Recognize arithmetic patterns (including geometric patterns or patterns in the addition table or multiplication table). Recall basic multiplication facts.

\square Interpret data using graphs including bar, line, and circle graphs, and Venn diagrams.
$\square \quad$ Identify the parts of a line plot.Recognize a line plot.Draw a scaled picture graph and a scaled bar graph to represent a data set.
\square Recognize a fraction as a number on the number line.

Data Analysis, Statistics, and Probability		
Cluster	2019 Math COS Standard	
Use real-world and mathematical	22. Write examples and non-examples of statistical questions, explaining that a statistical question anticipates variability in the data related to the question.	
problems to	Learning Objectives	Prior Knowledge Skills
analyze data and demonstrate an understanding of statistical variability and measures of center.	M.6.22.1: Define statistical question. M.6.22.2: Identify examples of statistical questions and non-statistical questions. \square M.6.22.3: Compare and contrast statistical questions and non- statistical questions.	\square Identify different types of questions. \square Recognize questions that produce numerical answers.

Data Analysis, Statistics, and Probability

Cluster
Use real-world and mathematical problems to analyze data and demonstrate an understanding of statistical variability and measures of center.

2019 Math COS Standard

23. Calculate, interpret, and compare measures of center (mean, median, mode) and variability (range and interquartile range) in real-world data sets.
a. Determine which measure of center best represents a real-world data set.
b. Interpret the measures of center and variability in the context of a problem.

Learning Objectives
\square M.6.23.1: Define numerical data set, measure of variation, and measure of center.
\square M.6.23.2: Relate the measure of variation, of a data set, with the concept of range.
\square M.6.23.3: Relate the measure of the center for a numerical data set with the concept of measure of center.
\square M.6.23.4: Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute.
\square M.6.23.5: Compare and contrast the center and variation.
\square M.6.23.6: Collect the data.
\square M.6.23.7: Organize the data.
\square M.6.23.8: Describe how attribute was measured including units of measurement.
\square M.6.23.9: Identify the attribute used to create the numerical set.

Prior Knowledge Skills

\square Identify a numerical data set.
\square Calculate the range of data.
\square Organize numbers in a ordered list.
\square Calculate the mean, median, and mean of a data set.

Data Analysis, Statistics, and Probability

Cluster
Use real-world and mathematical problems to analyze data and demonstrate an understanding of statistical variability and measures of center.

2019 Math COS Standard

24. Represent numerical data graphically, using dot plots, line plots, histograms, stem and leaf plots, and box plots.
a. Analyze the graphical representation of data by describing the center, spread, shape (including approximately symmetric or skewed), and unusual features (including gaps, peaks, clusters, and extreme values).
b. Use graphical representations of real-world data to describe the context from which they were collected.

Learning Objectives

\square M.6.24.1: Define dot plots, line plot, stem and leaf plots, upper quartile, lower quartile, median, histograms, and box plots.
\square M.6.24.2: Recall how to read a graph or table.
\square M.6.24.3: Calculate upper quartile median, lower quartile median, overall median, greatest value, and lowest value.
\square M.6.24.4: Create box plot using calculations.
\square M.6.24.5: Plot data on dot plots and histograms.
\square M.6.24.6: Construct and label the display.
\square M.6.24.7: Recognize the different types of displays.
\square M.6.24.8: Define distribution and skew.
\square M.6.24.9: Describe the shape of a set of data in a given distribution.
\square M.6.24.10: Describe the spread of a set of data in a given distribution.
\square M.6.24.11: Describe the center of a set of data in a given distribution.

Prior Knowledge Skills

\square Identify different types of graphs.
\square Create a bar graph and box plot.
\square Organize data in an ordered list.

Geometry and Measurement

Cluster

Graph polygons in the coordinate plane to solve realworld and mathematical problems.

2019 Math COS Standard

25. Graph polygons in the coordinate plane given coordinates of the vertices to solve real-world and mathematical problems.
a. Determine missing vertices of a rectangle with the same x-coordinate or the same y-coordinate when graphed in the coordinate plane.
b. Use coordinates to find the length of a side between points having the same x-coordinate or the same y coordinate.
c. Calculate perimeter and area of a polygon graphed in the coordinate plane (limiting to polygons in which consecutive vertices have the same x-coordinate or the same y-coordinate).

Learning Objectives
\square M.6.25.1: Define vertices.
\square M.6.25.2: Apply absolute value to find the length of a side joining points with the same first coordinate or the same second coordinate.
\square M.6.25.3: Plot points on a coordinate plane., then connect points for the vertices to sketch a polygon.
\square M.6.25.4: Identify ordered pairs.
\square M.6.25.5: Recognize polygons.
\square M.6.25.6: Define perimeter and area.
\square M.6.25.7: Identify the length between vertices on a coordinate plane.
\square M.6.25.8: Calculate the perimeter and area using the distance between the vertices.

Prior Knowledge Skills

\square Recognize and draw shapes having specified attributes such as a given number of angles or a given number of equal faces.
\square Identify triangles, quadrilaterals, pentagons, hexagons, heptagons, and octagons based on the number of sides, angles, and vertices.
\square Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals).
\square Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
\square Recognize attributes of shapes.
\square Recall the vocabulary of shapes (labels, sides, faces, vertices, etc.). Sort shapes into categories.
\square Define ordered pair of numbers, quadrant one, coordinate plane, and plot points. Label the horizontal axis (x).
$\square \quad$ Label the vertical axis (y).
\square Identify the x and y values in ordered pairs.
\square Model writing ordered pairs.
\square Define vertex/vertices and angle.
\square Recall the formula for area ($\mathrm{L} \times \mathrm{W}$).

\square Recognize that unit squares are equal.
\square Recall the formula for perimeter ($\mathrm{P}=\mathrm{L}+\mathrm{L}+\mathrm{W}+\mathrm{W}$ or $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$).
\square Recall basic addition and multiplication facts.

Geometry and Measurement

Cluster

Solve real-world and mathematical problems to determine area, surface area, and volume.
Note: Students
must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.

2019 Math COS Standard

26. Calculate the area of triangles, special quadrilaterals, and other polygons by composing and decomposing them into known shapes.
a. Apply the techniques of composing and decomposing polygons to find area in the context of solving real-world and mathematical problems.

Learning Objectives

\square M.6.26.1: Define area, special quadrilaterals, right triangles, and polygons.
\square M.6.26.2: Analyze the area of other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes.
\square M.6.26.3: Apply area formulas to solve realworld mathematical problems.
$\square \quad$ M.6.26.4: Demonstrate how the area of a rectangle is equal to the sum of the area of two equal right triangles.
$\square \quad$ M.6.26.5: Explain how to find the area for rectangles.
\square M.6.26.6: Select manipulatives to demonstrate how to compose and decompose triangles and other shapes.
\square M.6.26.7: Recognize and demonstrate that two right triangles make a rectangle.

Prior Knowledge Skills

\square Apply the area and perimeter formulas for rectangles in real-world and mathematical problems.
\square Recall the formula for area (LXW).
\square Recognize that unit squares are equal.
\square Recall the formula for perimeter ($\mathrm{P}=\mathrm{L}+\mathrm{L}+\mathrm{W}+\mathrm{W}$ or $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$).
\square Recall basic addition and multiplication facts.
\square Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole.
\square Partition a shape into 4 parts with equal area and describe the area of each part as 1 of the area of the shape.
\square Partition circles and rectangles into two, three, or four equal shares; describe the shares using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves, three thirds, or four fourths.
\square Recognize that equal shares of identical wholes need not have the same shape.
\square Demonstrate equivalent fractions using concrete objects or pictorial representations.
$\square \quad$ Define right angle.
\square Recognize that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals).
\square Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
*Critical Standard

| | | \square Recognize and draw shapes having specified attributes such as a
 given number of angles or a given number of equal faces. |
| :--- | :--- | :--- | :--- |
| \square | Identify triangles. | |

Geometry and Measurement

Cluster	2019 Math COS Standard

Solve real-world and mathematical problems to determine area, surface area, and volume.
Note: Students must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.
27. Determine the surface area of three-dimensional figures by representing them with nets composed of rectangles and triangles to solve real-world and mathematical problems.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.6.27.1: Define three-dimensional figures, surface area, and nets.
\square M.6.27.2: Identify three-dimensional figures
\square M.6.27.3: Draw nets to find the surface area of a given three-dimensional figure.
\square Describe attributes of three-dimensional figures.
\square Describe attributes of two-dimensional figures.
\square Identify solid figures.
M.6.27.4: Recall how to calculate the area of a rectangle.
\square M.6.27.5: Select and create a threedimensional figure using manipulatives.
\square Recall the formula for area (LXW).
\square Recognize that unit squares are equal.

Geometry and Measurement

Cluster

Solve real-world and mathematical problems to determine area, surface area, and volume.
Note: Students
must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.

2019 Math COS Standard

28. Apply previous understanding of volume of right rectangular prisms to those with fractional edge lengths to solve real-world and mathematical problems.
a. Use models (cubes or drawings) and the volume formulas ($\mathrm{V}=\mathrm{lwh}$ and $\mathrm{V}=\mathrm{Bh}$) to find and compare volumes of right rectangular prisms.

Learning Objectives

\square M.6.28.1: Define volume, rectangular prism, edge, and formula.
\square M.6.28.2: Recall how to multiply fractional numbers.
M.6.28.3: Evaluate the volumes of rectangular prisms in the context of solving real-world and mathematical problems.
\square M.6.28.4: Use models and volume formulas ($V=I w h$ and $V=B h$) to find volumes in the context of solving real-world and mathematical problems.
\square M.6.28.5: Calculate the volume of a rectangular prism using fractional lengths.
\square M.6.28.6: Test the formula $V=I w h$ and $V=B h$ with the experimental findings.
\square M.6.28.7: Experiment with finding the volume using a variety of sizes of rectangular prisms manipulatives.

Prior Knowledge Skills

\square Define volume.
\square Recognize the formula for volume.
\square Recall the attributes of three-dimensional solids.
\square Compare the unit size of volume/capacity in the metric system including milliliters and liters.
\square Measure and estimate liquid volumes.
\square Describe attributes of three-dimensional figures.
\square Describe attributes of two-dimensional figures.
\square Define volume including the formulas $V=1 \times w \times h$, and $V=B \times h$.
\square Define solid figures.
\square Define unit cube.
\square Recognize that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals).
\square Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
\square Describe attributes of three-dimensional figures.
\square Describe attributes of two-dimensional figures.
\square Compare the unit size of volume/capacity in the metric system including milliliters and liters.

Grade 7

Proportional Reasoning

Cluster

Analyze

 proportional relationships and use them to solve real-world and mathematical problems.2019 Math COS Standard

1. *Calculate unit rates of length, area, and other quantities measured in like or different units that include ratios or fractions.

Learning Objectives \quad Prior Knowledge Skills

\square M.7.1.1: Define unit rate, proportions, area, length, and ratio.
\square M.7.1.2: Recall how to find unit rates using ratios.
\square M.7.1.3: Recall the steps used to solve division of fraction problems.
\square Recall addition and subtraction of fractions as joining and separating parts referring to the same whole.
\square Identify two fractions as equivalent (equal) if they are the same size or the same point on a number line.
\square Recognize and generate simple equivalent fractions, e.g., $1 / 2=$ $2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
\square Generate equivalent fractions.Define quantity, fraction, and ratio.Reinterpret a fraction as a ratio. Example: Read $2 / 3$ as 2 out of 3.Write a ratio as a fraction.
\square Create a ratio or proportion from a given word problem, diagram, table, or equation.
\square Calculate unit rate or rate by using ratios or proportions.

Proportional Reasoning

Cluster

Analyze proportional relationships and use them to solve real-world and mathematical problems.

2019 Math COS Standard
2. *Represent a relationship between two quantities and determine whether the two quantities are related proportionally.
a. Use equivalent ratios displayed in a table or in a graph of the relationship in the coordinate plane to determine whether a relationship between two quantities is proportional.
b. Identify the constant of proportionality (unit rate) and express the proportional relationship using multiple representations including tables, graphs, equations, diagrams, and verbal descriptions.
b. Explain in context the meaning of a point (x, y) on the graph of a proportional relationship, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

Learning Objectives
\square M.7.2.1: Define proportions and proportional relationships.
\square M.7.2.2: Demonstrate how to write ratios as a fraction.
\square M.7.2.3: Define equivalent ratios and origin.
\square M.7.2.4: Locate the origin on a coordinate plane.
\square M.7.2.5 Show how to graph on Cartesian plane.
\square M.7.2.6: Determine if the graph is a straight line through the origin.
\square M.7.2.7: Use a table or graph to determine whether two quantities are proportional.
\square M.7.2.8: Define a constant and equations.
\square M.7.2.9: Create a table from a verbal description, diagram, or a graph.
\square M.7.2.10: Identify numeric patterns and finding the rule for that pattern.
\square M.7.2.11: Recall how to find unit rate.
\square M.7.2.12: Recall how to write equations to represent a proportional relationship.

Prior Knowledge Skills

Recall basic addition, subtraction, multiplication, and division facts.
\square Define ordered pair of numbers.
$\square \quad$ Define x-axis, y-axis, and zero on a coordinate.
\square Specify locations on the coordinate system.
\square Define ordered pair of numbers, quadrant one, coordinate plane, and plot points.
$\square \quad$ Label the horizontal axis (x).
$\square \quad$ Label the vertical axis (y).
$\square \quad$ Identify the x and y values in ordered pairs.
\square Model writing ordered pairs.
\square Define quantity, fraction, and ratio.
\square Reinterpret a fraction as a ratio. Example: Read $2 / 3$ as 2 out of 3 .
\square Write a ratio as a fraction.
\square Create a ratio or proportion from a given word problem, diagram, table, or equation.

	\square	M.7.2.13: Discuss the use of variables.	
\square	M.7.2.14: Define ordered pairs.		
\square	M.7.2.15: Show how to plot points on a		
	Cartesian plane.		
\square	M.7.2.16: Locate the origin on the		
coordinate plane.			

Proportional Reasoning

Cluster
Analyze
proportional
relationships and

2019 Math COS Standard

3. *Solve multi-step percent problems in context using proportional reasoning, including simple interest, tax, gratuities, commissions, fees, markups and markdowns, percent increase, and percent decrease.

Learning Objectives

\square M.7.3.1: Define interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error.
$\square \quad$ M.7.3.2: Apply definitions to context in real world problems.
\square M.7.3.3: Solve proportional problems.
\square M.7.3.4: Recall how to find percent and ratios.
\square M.7.3.5: Recall steps for solving multi-step problems.

Prior Knowledge Skills

Define percent.Calculate a proportion for missing informationIdentify a proportion from given information.Solve a proportion using part over whole equals percent over 100.
$\square \quad$ Define equation and variable.
\square Set up an equation to represent the given situation, using correct mathematical operations and variables.
$\square \quad$ Identify the unknown, in each situation, as the variable.
\square Solve the equation represented by the real-world situation.

Number Sense and Operations

Cluster	2019 Math COS Standard	
Apply and extend prior knowledge of addition, subtraction, multiplication, and division to operations with rational numbers.	4. *Apply and extend knowledge of operations of whole numbers, fractions, and decimals to add, subtract, multiply, and divide rational numbers including integers, signed fractions, and decimals. a. Identify and explain situations where the sum of opposite quantities is 0 and opposite quantities are defined as additive inverses. b. Interpret the sum of two or more rational numbers, by using a number line and in real-world contexts. c. Explain subtraction of rational numbers as addition of additive inverses. d. Use a number line to demonstrate that the distance between two rational numbers on the number line is the absolute value of their difference and apply this principle in real-world contexts. e. Extend strategies of multiplication to rational numbers to develop rules for multiplying signed numbers, showing that the properties of the operations are preserved. f. Divide integers and explain that division by zero is undefined. Interpret the quotient of integers (with a nonzero divisor) as a rational number. b. Convert a rational number to a decimal using long division, explaining that the decimal form of a rational number terminates or eventually repeats.	
	Learning Objectives	Prior Knowledge Skills
	M.7.4.1: Define rational numbers, horizontal, and vertical. M.7.4.2: Recall how to extend a horizontal number line. M.7.4.3: Recall how to extend a vertical number line. M.7.4.4: Demonstrate addition and subtraction of whole numbers using a horizontal or vertical number line. M.7.4.5: Give examples of rational numbers.	Define parentheses, braces, and brackets. Recall addition and subtraction of fractions as joining and separating parts referring to the same whole. Identify two fractions as equivalent (equal) if they are the same size or the same point on a number line. \square Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4$, $4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model. Generate equivalent fractions. Show on a number line that numbers that are equal distance from 0 and on opposite sides of 0 have opposite signs.

	M.7.4.6: Define absolute value and additive inverse. M.7.4.7: Explain that the sum of a number and its opposite is zero. M.7.4.8: Locate positive, negative, and zero numbers on a number line. M.7.4.9: Recall properties of addition and subtraction. M.7.4.10: Model addition and subtraction using manipulatives. M.7.4.11: Show addition and subtraction of 2 or more rational numbers using a number line within real world context. M.7.4.12: Define absolute value and additive inverse. M.7.4.13: Show subtraction as the additive inverse. M.7.4.14: Give examples of the opposite of a given number. M.7.4.15: Show addition and subtraction using a number line. M.7.4.16: Discuss various strategies for solving real-world and mathematical problems. M.7.4.17: Identify properties of operations for addition and subtraction. M.7.4.18: Recall the steps for solving addition and subtraction of rational numbers. M.7.4.19: Identify the difference between two rational numbers on a number line. M.7.4.20: Recall the steps of solving multiplication of rational numbers. M.7.4.21: Identify the pattern for multiplying signed numbers.	Define rational number Arrange integers and /or rational numbers on a horizontal or vertical number line. Locate the position of integers and/or rational numbers on a horizontal or vertical number line. Identify a rational number as a point on the number line.

| \square | M.7.4.22: Recall the steps of solving division
 of rational numbers. | |
| :--- | :--- | :--- | :--- | :--- |
| \square | M.7.4.23: Explain that dividing a rational
 number zero is undefined. | |
| \square | M.7.4.24: Recall that a fraction can be
 written as a division problem. | |
| \squareM.7.4.25: Recall the steps to divide two
 rational numbers. | | |
| \square | M.7.4.26: Identify whether a decimal is
 terminating or repeating. | |

Number Sense and Operations		
Cluster	2019 Math COS Standard	
Apply and extend prior knowledge of addition, subtraction, multiplication, and division to operations with rational numbers.	5. *Solve real-world and mathematical problems involving the four operations of rational numbers, including complex fractions. Apply properties of operations as strategies where applicable.	
	Learning Objectives	Prior Knowledge Skills
	\square M.7.5.1: Discuss various strategies for solving real-world and mathematical problems. \square M.7.5.2: Recall steps for solving fractional problems. \square M.7.5.3: Identify properties of operations for addition and multiplication. \square M.7.5.4: Recall the rules for multiplication and division of rational numbers. \square M.7.5.5: Recall the rules for addition and subtraction of rational numbers.	Recall addition and subtraction of fractions as joining and separating parts referring to the same whole. Define rational number. Arrange integers and /or rational numbers on a horizontal or vertical number line. Locate the position of integers and/or rational numbers on a horizontal or vertical number line. Identify a rational number as a point on the number line.

Algebra and Functions

Cluster	2019 Math COS Standard	
Create equivalent expressions using the properties of operations.	6. *Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	
	Learning Objectives	Prior Knowledge Skills
	M.7.6.1: Define linear expression, rational, coefficient, and rational coefficient. \square M.7.6.2: Simplify an expression by dividing by the greatest common factor (Ex. 18x + $6 y=6(3 x+y)$. \square M.7.6.3: Simplify expressions with parentheses (Ex. $5(4+x)=20+5 x)$. \square M.7.6.4: Recognize the property demonstrated in a given expression. \square M.7.6.5: Combine like terms of a given expression. \square M.7.6.6: Recall how to find the greatest common factor. \square M.7.6.7: Give examples of the properties of operations including distributive, commutative, and associative.	Apply properties of operations for addition and subtraction. Define equivalent, simplify, term, distributive property, associative property of addition and multiplication, and the commutative property of addition and multiplication. \square Simplify expressions with parentheses (Ex. $5(4+x)=20+5 x$). Combine terms that are alike of a given expression. Recognize the property demonstrated in a given expression. Simplify an expression by dividing by the greatest common factor. Example: $18 x+6 y=6(3 x+y)$. $\square \quad$ Determine the greatest common factor.

Algebra and Functions

Cluster	2019 Math COS Standard	
Create equivalent expressions using the properties of operations.	7. *Generate expressions in equivalent forms based on context and explain how the quantities are related.	
	Learning Objectives	Prior Knowledge Skills
	\square M.7.7.1: Define expression, equivalent, and equivalent expressions. \square M.7.7.2: Recall mathematical terms such as sum, difference, etc. \square M.7.7.3: Recognize that a variable without a written coefficient is understood to have a coefficient of one. \square M.7.7.4: Recall how to convert mathematical terms to mathematical symbols and numbers and vice versa. \square M.7.7.5: Restate numerical expressions with words.	Define equivalent expressions. Recognize equivalent expressions. Recognize that a variable without a written coefficient is understood to be one. \square Convert mathematical terms to mathematical symbols and numbers (Ex. sum; +, difference; -; product; •, quotient; \div).

Algebra and Functions

Cluster	2019 Math COS Standard	
Solve real-world and mathematical problems using numerical and algebraic expressions, equations, and inequalities.	8. *Solve multi-step real-world and mathematical problems involving rational numbers (integers, signed fractions and decimals), converting between forms as needed. Assess the reasonableness of answers using mental computation and estimation strategies.	
	Learning Objectives	Prior Knowledge Skills
	M.7.8.1: Define estimation, rational numbers, and reasonable. M.7.8.2: Recall mental calculation strategies. M.7.8.3: Recall estimation strategies. M.7.8.4: Analyze the given word problem to set up a mathematical problem. M.7.8.5: Recognize the mathematical operations of rational numbers in any form, including converting between forms. (Ex. $0.25=1 / 4=25 \%$). M.7.8.6: Recognize the rules of operations of positive and negative numbers. M.7.8.7: Recognize properties of numbers (Distributive, Associative, Commutative). M.7.8.8: Recall problem solving methods.	Represent addition and subtraction with objects, mental images, drawings, expressions, or equations. Define integers, positive and negative numbers. Define rational number. Define equivalent, simplify, term, distributive property, associative property of addition and multiplication, and the commutative property of addition and multiplication.

Algebra and Functions

Cluster

Solve real-world and mathematical problems using numerical and algebraic expressions, equations, and inequalities.

2019 Math COS Standard

9. *Use variables to represent quantities in real-world or mathematical problems and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality, and interpret it in the context of the problem.

Learning Objectives

\square M.7.9.1: Define equation, inequality, and variable.
\square M.7.9.2: Set up equations and inequalities to represent the given situation, using correct mathematical operations and variables.
\square M.7.9.3: Calculate a solution or solution set by combining like terms, isolating the variable, and/or using inverse operations.
\square M.7.9.4: Test the found number or number set for accuracy by substitution.
\square M.7.9.5: Recall solving one step equations and inequalities.
\square M.7.9.6: Recognize properties of numbers (Distributive, Associative, Commutative).
\square M.7.9.7: Define equation and variable.
\square M.7.9.8: Set up an equation to represent the given situation, using correct mathematical operations and variables.

Prior Knowledge Skills

Define inequality.
\square Define equivalent, simplify, term, distributive property, associative property of addition and multiplication, and the commutative property of addition and multiplication.
\square Define equation, solution of an equation, solution of an inequality, and inequality.
\square Compare and contrast equations and inequalities.
\square Determine if an inequality is by replacing the variable with a given number.
\square Determine if an equation is true by replacing the variable with a given number.
\square Simplify a numerical sentence to determine equivalence.
\square Recognize the symbols for $=,>,<, \leq$, and \geq.
\square Define equation and variable.
\square Set up an equation to represent the given situation, using correct mathematical operations and variables.
\square Identify the unknown, in a given situation, as the variable.
\square

Data Analysis, Statistics, and Probability		
Cluster	2019 Math COS Standard	
Make inferences about a population using random sampling.	10. Examine a sample of a population to generalize information about the population. a. Differentiate between a sample and a population. b. Compare sampling techniques to determine whether a sample is random and thus representative of a population, explaining that random sampling tends to produce representative samples and support valid inferences. c. Determine whether conclusions and generalizations can be made about a population based on a sample. d. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest, generating multiple samples to gauge variation and making predictions or conclusions about the population. e. Informally explain situations in which statistical bias may exist.	
	Learning Objectives	Prior Knowledge Skills
	\square M.7.10.1: Recall how to calculate range, outlier, ratio, and proportion. M.7.10.2: Define sample, data, variation, prediction, estimation, validity, population, inference, random sampling, statistic, and generalization. M.7.10.3: Explain the validity of random sampling. M.7.10.4: Differentiate the appropriate sampling method. M.7.10.5: Analyze attributes of sample size M.7.10.6: Compare and contrast the random sampling data to the population. M.7.10.7: Compare sample size with population to check for validity. \square M.7.10.8: Analyze conclusions of the sample to determine its appropriateness for the population.	\square Define statistical question. Calculate the range, mean, median, and mode of a numerical data set. Recognize the difference between population and sample. Identify bias from real world context.

Data Analysis, Statistics, and Probability		
Cluster	2019 Math COS Standard	
Make inferences from an informal comparison of two populations.	11. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	
	Learning Objectives	Prior Knowledge Skills
	\square M.7.11.1: Define measure of variability, distribution, and measure of center. \square M.7.11.2: Analyze the skew of the distributions and recognize the difference in measure of center and variability. \square M.7.11.3: Compare the measure of center and measure of variability of two distributions. \square M.7.11.4: Relate the measure of variation with the concept of range. \square M.7.11.5: Relate the measure of the center with the concept of mean. M.7.11.6: Recall how to calculate measure of center and measure of variability. \square M.7.11.7: Discuss how to read and interpret a graph.	Describe the center of a set of data in a given distribution. Compare and contrast the center and variation. Interpret graphing points in all four quadrants of the coordinate plane in real-world situations.

Data Analysis, Statistics, and Probability		
Cluster	2019 Math COS Standard	
Make inferences from an informal comparison of two populations.	12. Make informal comparative inferences about two populations using measures of center and variability and/or mean absolute deviation in context.	
	Learning Objectives	Prior Knowledge Skills
	\square M.7.12.1: Define measure of variability, measure of center, inference and mean absolute deviation. M.7.12.2: Recall how to calculate measure of center and measure of variability. M.7.12.3: Recall that center is related to measure of center and measure of variability is related to variation. M.7.12.4: Compare and contrast the measure of center and measure of variability of two numerical data sets. M.7.12.5: Calculate the mean absolute deviation of a data set in context.	Describe the center of a set of data in a given distribution. Compare and contrast the center and variation.

Data Analysis, Statistics, and Probability

Cluster	2019 Math COS Standard

Investigate
probability models.
13. Use a number from 0 to 1 to represent the probability of a chance event occurring, explaining that larger numbers indicate greater likelihood of the event occurring, while a number near zero indicates an unlikely event.
Learning Objectives \quad Prior Knowledge Skills
M.7.13.1: Define probability and event
\square M.7.13.2: Recall the order of fractions on a number line.
\square M.7.13.3: Recall how to compare fractions with like denominators.
\square M.7.13.4: Demonstrate how to compare fractions with different denominators.
\square M.7.13.5: Determine the likelihood of an event occurring.

Prior Knowledge Skills

\square Recall addition and subtraction of fractions as joining and separating parts referring to the same whole.
\square Identify two fractions as equivalent (equal) if they are the same size or the same point on a number line.
\square Recognize and generate simple equivalent fractions, e.g., $1 / 2=$ $2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
\square Generate equivalent fractions.

Data Analysis, Statistics, and Probability

Cluster
Investigate
probability models.

2019 Math COS Standard
14. Define and develop a probability model, including models that may or may not be uniform, where uniform models assign equal probability to all outcomes and non-uniform models involve events that are not equally likely.
a. Collect and use data to predict probabilities of events.
b. Compare probabilities from a model to observed frequencies, explaining possible sources of discrepancy.

Learning Objectives

\square M.7.14.1: Define probability of chance, probability of events, outcome, and probability of observed frequency.
\square M.7.14.2: Compare and contrast probability of chance and probability of observed frequency.
M.7.14.3: Display all outcomes in a graphic representation (probability model-tree diagram, organized list, table, etc.).
\square M.7.14.4: Demonstrate how to write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.
\square M.7.14.5: Recall how to simplify fractions to lowest terms.
\square M.7.14.6: Recognize equivalent fractions.
\square M.7.14.7: Recall how to create a table or graphic display of data.
\square M.7.14.8: Define probability of chance, outcome, and event.
\square M.7.14.9: List all possible outcomes using a graphic representation (probability

Prior Knowledge Skills

\square Recall addition and subtraction of fractions as joining and separating parts referring to the same whole.
\square Identify two fractions as equivalent (equal) if they are the same size or the same point on a number line.
\square Recognize and generate simple equivalent fractions, e.g., $1 / 2=$ $2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
\square Generate equivalent fractions.
\square Recall how to read a graph or table.

Data Analysis, Statistics, and Probability

Cluster
Investigate
probability models.

2019 Math COS Standard

15. Approximate the probability of an event using data generated by a simulation (experimental probability) and compare it to the theoretical probability.
a. Observe the relative frequency of an event over the long run, using simulation or technology, and use those results to predict approximate relative frequency.

Learning Objectives

\square M.7.15.1: Define probability of chance, outcome, theoretical probability, experimental probability and event.
\square M.7.15.2: Recognize the difference between possible outcomes and likely outcomes.
\square M.7.15.3: Write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.
\square M.7.15.4: Recall how to simplify fraction to lowest terms.
\square M.7.15.5: Recognize equivalent fractions.
\square M.7.15.6: Define relative frequency.

Prior Knowledge Skills

\square Recall addition and subtraction of fractions as joining and separating parts referring to the same whole.
\square Identify two fractions as equivalent (equal) if they are the same size or the same point on a number line.
\square Recognize and generate simple equivalent fractions, e.g., $1 / 2=$ $2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
\square Generate equivalent fractions.

Data Analysis, Statistics, and Probability

Cluster

Investigate probability models.

2019 Math COS Standard

16. Find probabilities of simple and compound events through experimentation or simulation and by analyzing the sample space, representing the probabilities as percents, decimals, or fractions.
a. Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams, and determine the probability of an event by finding the fraction of outcomes in the sample space for which the compound event occurred.
b. Design and use a simulation to generate frequencies for compound events.
b. Represent events described in everyday language in terms of outcomes in the sample space which composed the event.

Learning Objectives
\square M.7.16.1: Define simple events and compound events.
\square M.7.16.2: Discover when to add or multiply events to find probability of compound events.
\square M.7.16.3: Recall how to find the probability of simple events.
\square M.7.16.4: Demonstrate adding and multiplying fractions.
\square M.7.16.5: Recognize how to obtain a common denominator when adding fractions.
\square M.7.16.6: Recall how to add fractions with like denominators.
\square M.7.16.7: Define simulation, frequency, and compound events.
\square M.7.16.8: Recall how to find the probability of compound events.
\square M.7.16.9: Create a tree diagram including all possible outcomes.

Prior Knowledge Skills

\square Recall addition and subtraction of fractions as joining and separating parts referring to the same whole.
\square Identify two fractions as equivalent (equal) if they are the same size or the same point on a number line.
\square Recognize and generate simple equivalent fractions, e.g., $1 / 2=$ $2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
\square Generate equivalent fractions.
\square Recall how to read a graph or table.

Geometry and Measurement

Cluster	2019 Math COS Standard	
Construct and describe geometric figures, analyzing relationships among them.	17. Solve problems involving scale drawings of geometric figures, including computation of actual lengths and areas from a scale drawing and reproduction of a scale drawing at a different scale.	
	Learning Objectives	Prior Knowledge Skills
	M.7.17.1: Define scale, scale drawings, length, area, and geometric figures. M.7.17.2: Locate/use scale on a map. M.7.17.3: Identify proportional relationships. M.7.17.4: Recognize numeric patterns. M.7.17.5: Recall how to solve proportions.	\square Construct repeating and growing patterns with a variety of representations. Continue an existing pattern. Identify arithmetic patterns (including patterns in the addition table or multiplication table) and explain them using properties of operations. \square Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. \square Define unit rate, proportion, and rate. Create a ratio or proportion from a given word problem.

Geometry and Measurement

Cluster	2019 Math COS Standard	
Construct and describe geometric figures, analyzing relationships among them.	18. Construct geometric shapes (freehand, using a ruler and a protractor, and using technology), given a written description or measurement constraints with an emphasis on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	
	Learning Objectives	Prior Knowledge Skills
	M.7.18.1: Demonstrate how to use a protractor to draw an angle. \square M.7.18.2: Construct segments of a given length using a ruler. \square M.7.18.3: Recognize attributes of geometric shapes.	Model using a protractor to draw angles. Measure the length of an object by selecting and using appropriate tools such as a ruler. Recognize attributes of shapes. Define vertex/vertices and angle.

Geometry and Measurement

Cluster	2019 Math COS Standard	
Construct and describe geometric figures, analyzing relationships among them.	19. Describe the two-dimensional figures created by slicing three-dimensional figures into plane sections.	
	Learning Objectives	Prior Knowledge Skills
	M.7.19.1: Define two-dimensional figure, three-dimensional figure, and plane section. M.7.19.2: List attributes of threedimensional figures. M.7.19.3: List attributes of twodimensional figures. M.7.19.4: Describe the relationship between two- and three-dimensional figures. M.7.19.5: Recognize symmetry.	\square Identify shapes in different categories (e.g., rhombuses, rectangles, and others) that may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw shapes having specified attributes such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, heptagons, and octagons based on the number of sides, angles, and vertices. Define three-dimensional figures, surface area, and nets. Select and create a three-dimensional figure using manipulatives. Identify three-dimensional figures.

Geometry and Measurement

Cluster 2019 Math COS Standard

Solve real-world and mathematical problems involving angle measure, circumference, area, surface area, and volume.
Note: Students
must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.
20. Explain the relationships among circumference, diameter, area, and radius of a circle to demonstrate understanding of formulas for the area and circumference of a circle.
a. Informally derive the formula for area of a circle.
b. Solve area and circumference problems in real-world and mathematical situations involving circles.
Learning Objectives \quad Prior Knowledge Skills
\square M.7.20.1: Define diameter, radius, circumference, area of a circle, and formula.
\square M.7.20.2: Identify and label parts of a circle.
\square M.7.20.3: Recognize the attributes of a circle.
\square M.7.20.4: Apply the formula of area and circumference to real world mathematical situations.

Prior Knowledge Skills
\square Define center, radius, and diameter of a circle.
\square Identify real-world examples of radius and diameter. Examples:
bicycle wheel, pizza, pie.

Geometry and Measurement

Cluster 2019 Math COS Standard

Solve real-world and mathematical problems involving angle measure, circumference, area, surface area, and volume.
Note: Students must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.
21. Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure.
\square M.7.21.1: Define supplementary angles, complementary angles, vertical angles, adjacent angles, parallel lines, perpendicular lines, and intersecting lines.
\square M.7.21.2: Discuss strategies for solving multi-step problems and equations.
M.7.21.3: Identify all types of angles.
\square M.7.21.4: Identify right angles and straight angles.

Prior Knowledge Skills

\square Model using a protractor to draw angles.
\square Draw points, lines, line segments, and parallel and perpendicular lines, angles, and rays.
\square Define vertex/vertices and angle.

Geometry and Measurement

Cluster	2019 Math COS Standard

Solve real-world and mathematical problems involving angle measure, circumference, area, surface area, and volume.
Note: Students must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.
22. Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right rectangular prisms.
Learning Objectives \quad Prior Knowledge Skills
\square M.7.22.1: Define volume, surface area, triangles, quadrilaterals, polygons, cubes, and right prisms.
\square M.7.22.2: Discuss strategies for solving real-world mathematical problems.
\square M.7.22.3: Recall formulas for calculating volume and surface area.
\square M.7.22.4: Identify the attributes of triangles, quadrilaterals, polygons, cubes, and right prisms.

Prior Knowledge Skills

\square Recognize the formula for volume.
\square Define volume, rectangular prism, edge, and formula.
\square Evaluate the volumes of rectangular prisms in the context of solving real-world and mathematical problems.
\square Set up $\mathrm{V}=\mathrm{I}$ wh and $\mathrm{V}=\mathrm{Bh}$ to find volumes in the context of solving real-world and mathematical problems.
\square Discover the volume of a rectangular prism using manipulatives.
\square Define three-dimensional figures, surface area, and nets.
\square Evaluate how to apply using surface area of a three-dimensional figure to solve real-world and mathematical problems.
\square Draw nets to find the surface area of a given three-dimensional figure.

Grade 8

Number Systems and Operations

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Understand that the real number system is composed of rational and irrational numbers.

1. Define the real number system as composed of rational and irrational numbers.
a. Explain that every number has a decimal expansion; for rational numbers, the decimal expansion repeats or terminates.
b. Convert a decimal expansion that repeats into a rational number.

Learning Objectives

Prior Knowledge Skills

\square M.8.1.1: Define expanding decimals, terminating decimals, rational number, and irrational number.
\square M.8.1.2: Identify and give examples of rational numbers.
\square M.8.1.3: Demonstrate how to convert fractions to decimals.
\square M.8.1.4: Recall steps for division of fractions.
$\square \quad$ Define rational number.
\square Plot pairs of integers and/or rational numbers on a coordinate plane.
\square Arrange integers and /or rational numbers on a horizontal or vertical number line.
\square Locate the position of integers and/or rational numbers on a horizontal or vertical number line.
\square Identify a rational number as a point on the number line.
\square Recognize place value of whole numbers and decimals.
Give examples of rational numbers.

Number Systems and Operations

Cluster	2019 Math COS Standard

Understand that the real number system is composed of rational and irrational numbers.

2019 Math COS Standard
2. Locate rational approximations of irrational numbers on a number line, compare their sizes, and estimate the values of the irrational numbers.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.8.2.1: Define square root, expressions, and approximations.
\square M.8.2.2: Identify properties of exponents.
\square M.8.2.3: Recall how to compare numbers.
\square M.8.2.4: Identify perfect squares and square roots.
\square M.8.2.5: Demonstrate how to locate points on a vertical or horizontal number line.
\square M.8.2.6: Recall how to estimate.
\square Define equivalent, simplify, term, distributive property, associative property of addition and multiplication, and the commutative property of addition and multiplication.
\square Simplify expressions with parentheses (Ex. $5(4+x)=20+5 x$).Combine terms that are alike of a given expression.
\square Recognize the property demonstrated in a given expression.
\square Discuss various strategies for solving real-world and mathematical problems. -Recall steps for solving fractional problems.
\square Identify properties of operations for addition and multiplication.
\square Recall the rules for multiplication and division of rational numbers.
\square Recall the rules for addition and subtraction of rational numbers.
\square Demonstrate the location of positive and negative numbers on a vertical and horizontal number line.

Algebra and Functions

Cluster 2019 Math COS Standard

Apply concepts of integer exponents
and
radicals.
3. *Develop and apply properties of integer exponents to generate equivalent numerical and algebraic expressions.

Learning Objectives

\square M.8.3.1: Define exponent, power, coefficient, integers, equivalent, and numerical expression.
\square M.8.3.2: Restate negative exponents as positive exponents in the form $1 / x^{2}$.
\square M.8.3.3: Restate zero exponents as 1 ($\mathrm{X}^{0}=$ 1).
\square M.8.3.4: Recognize to add exponents when multiplying terms with like bases (Property of product of powers).
\square M.8.3.5: Recognize to subtract exponents when dividing terms with like bases (Property of quotient of powers).
\square M.8.3.6: Compute a numerical expression with positive exponents.
\square M.8.3.7: Restate exponential numbers as repeated multiplication.
\square M.8.3.8: Compute problems with adding and subtracting integers.

Prior Knowledge Skills

\square Define exponent, numerical expression, algebraic expression, variable, base, power, square of a number, and cube of a number.
\square Compute a numerical expression with exponents, with or without a calculator.
\square Restate exponential numbers as repeated multiplication.
\square Choose the correct value to replace each variable in the expression (Substitution).
\square Calculate the multiplication of single or multi-digit whole numbers, with or without a calculator.
\square Define integers, positive and negative numbers.
\square Demonstrate the location of positive and negative numbers on a vertical and horizontal number line.
\square Give examples of positive and negative numbers to represent quantities having opposite directions in real-world contexts.
\square Discuss the measure of centering of 0 in relationship to positive and negative numbers.
\square Discover that the opposite of the opposite of a number is the number itself.
\square Show on a number line that numbers that are equal distance from 0 and on opposite sides of 0 have opposite signs.

Algebra and Functions

Cluster 2019 Math COS Standard

Apply concepts of integer exponents and
radicals.
4. Use square root and cube root symbols to represent solutions to equations.
a. Evaluate square roots of perfect squares (less than or equal to 225) and cube roots of perfect cubes (less than or equal to 1000).
b. Explain that the square root of a non-perfect square is irrational.

Learning Objectives

Prior Knowledge Skills

\square M.8.4.1: Define square root, cube root, inverse, perfect square, perfect cube, andRestate exponential numbers as repeated multiplication. irrational number.
\square M.8.4.2: Recognize the inverse operation of squaring a number is square root and the inverse of cubing a number is cube root.
\square M.8.4.3: Restate exponential numbers as repeated multiplication.
\square M.8.4.4: Calculate the multiplication of single or multi-digit whole numbers.
\square M.8.4.5: Recognize rational and irrational numbers.

Algebra and Functions

Cluster 2019 Math COS Standard

Apply concepts of integer exponents and
radicals.

5. Estimate and compare very large or very small numbers in scientific notation.

Learning Objectives

Prior Knowledge Skills

\square M.8.5.1: Recognize a fraction as division of the denominator into the numerator.
\square M.8.5.2: Demonstrate that when multiplying powers of like bases; add the exponents (Property of products of powers).
\square M.8.5.3: Demonstrate that when dividing powers of like bases; subtract the exponents (Property of quotient of powers).
\square M.8.5.4: Demonstrate how to convert fractions to a decimal, with or without a calculator.
\square M.8.5.5: Recall how to write numbers in scientific notation.
\square M.8.5.6: Recall estimation strategies.
\square Define the parts of a division problem including divisor, dividend, and quotient.
$\square \quad$ Write a division equation.
\square Apply the signs \div and $=$ to the action of separating sets.
\square Recognize division as either repeated subtraction, parts of a set, parts of a whole, or the inverse of multiplication.
\square Model grouping with basic division facts partitioned equally (e.g., 8/2).
\square Apply properties of operations as strategies to subtract.Subtract within 20.
\square Represent equal groups using manipulatives.

Algebra and Functions

Cluster 2019 Math COS Standard

Apply concepts of integer exponents and
radicals.
6. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.
a. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.
b. Interpret scientific notation that has been generated by technology.

Learning Objectives

Prior Knowledge Skills
M.8.6.1: Define scientific notation.
\square M.8.6.2: Calculate multiplication and division of scientific notation, with or without a calculator.
\square M.8.6.3: Recall properties of exponents.
\square M.8.6.4: Recall how to write a number using scientific notation.
\square M.8.6.5: Restate exponents as repeated multiplication.
\square M.8.6.6: Discuss the real-world application of scientific notation (very large or very small quantities).
\square M.8.6.7: Demonstrate difference of scientific notation symbol between paper and calculator.
\square Recall that exponents are repeated multiplication.
$\square \quad$ Demonstrate the ability to multiply and divide a number by a power of ten.
\square Recognize the place value changes when multiplying/dividing by powers of ten.

Algebra and Functions

Cluster	2019 Math COS Standard	
Analyze the relationship between proportional and nonproportional situations.	7. Determine whether a relationship between two variables is proportional or non-proportional.	
	Learning Objectives	Prior Knowledge Skills
	M.8.7.1: Define proportional, independent variable, dependent variable, unit rate. M.8.7.2: Recall equivalent ratios and origin on a coordinate (Cartesian) plane. \square M.8.7.3: Recall how to write a ratio of two quantities as a fraction. \square M.8.7.4: Identify the unit rate of two quantities. \square M.8.7.5: Recall that for a relationship to be proportional, both variables must start at zero.	\square Define unit rate, proportion, and rate. Create a ratio or proportion from a given word problem. Calculate unit rate by using ratios or proportions. Write a ratio as a fraction. Define ratio, rate, proportion, percent, equivalent, input, output, ordered pairs, diagram, unit rate, and table. \square Create a ratio or proportion from a given word problem, diagram, table, or equation. \square Calculate unit rate or rate by using ratios or proportions with or without a calculator. \square Restate real world problems or mathematical problems. Construct a graph from a set of ordered pairs given in the table of equivalent ratios. \square Calculate missing input and/or output values in a table with or without a calculator. \square Draw and label a table of equivalent ratios from given information. Identify the parts of a table of equivalent ratios (input, output, etc.). \square Compute the unit rate, unit price, and constant speed with or without a calculator. \square Create a proportion or ratio from a given word problem.

Algebra and Functions

Cluster	2019 Math COS Standard	
Analyze the relationship between proportional and nonproportional situations.	8. *Graph proportional relationships. a. Interpret the unit rate of a proportional relationship, describing the constant of proportionality as the slope of the graph which goes through the origin and has the equation $y=m x$ where m is the slope.	
	Learning Objectives	Prior Knowledge Skills
	M.8.8.1: Define proportional relationships, unit rate, and slope. M.8.8.2: Demonstrate how to write ratios. M.8.8.3: Recall how to solve proportions using cross products. M.8.8.4: Recall how to find the unit rate. M.8.8.5: Demonstrate how to graph on a Cartesian plane. \square M.8.8.6: Recall that for a relationship to be proportional, the graph must pass through the origin. \square M.8.8.7: Identify the slope-intercept form $(y=m x+b)$ of an equation where m is the slope and y is the y -intercept.	\square Define unit rate, proportion, and rate. Create a ratio or proportion from a given word problem. Calculate unit rate by using ratios or proportions. Write a ratio as a fraction. Define ratio, rate, proportion, percent, equivalent, input, output, ordered pairs, diagram, unit rate, and table. \square Create a ratio or proportion from a given word problem, diagram, table, or equation. Calculate unit rate or rate by using ratios or proportions with or without a calculator. Restate real world problems or mathematical problems. Construct a graph from a set of ordered pairs given in the table of equivalent ratios. \square Calculate missing input and/or output values in a table with or without a calculator. \square Draw and label a table of equivalent ratios from given information. Identify the parts of a table of equivalent ratios (input, output, etc.).

Algebra and Functions

Cluster

Analyze the relationship between proportional and nonproportional situations.

2019 Math COS Standard

9. Interpret $y=m x+b$ as defining a linear equation whose graph is a line with m as the slope and b as the y-intercept.
a. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in a coordinate plane.
b. Given two distinct points in a coordinate plane, find the slope of the line containing the two points and explain why it will be the same for any two distinct points on the line.
c. Graph linear relationships, interpreting the slope as the rate of change of the graph and the yintercept as the initial value.
d. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts.

Learning Objectives

\square M.8.9.1: Define linear functions, nonlinear functions, slope, and y-intercept.
\square M.8.9.2: Recall how to solve problems using the distributive property.
\square M.8.9.3: Recognize linear equations.
\square M.8.9.4: Identify ordered pairs.
\square M.8.9.5: Recognize ordered pairs.
\square M.8.9.6: Define similar triangles, intercept, slope, vertical, horizontal, and origin.
\square M.8.9.7: Recognize similar triangles.
\square M.8.9.8: Generate the slope of a line using given ordered pairs.
\square M.8.9.9: Analyze the graph to determine the rate of change.
\square M.8.9.10: Demonstrate how to plot points on a coordinate plane using ordered pairs from table.

Prior Knowledge Skills

\square Define ordered pairs.
\square Name the pairs of integers and/or rational numbers of a point on a coordinate plane.
\square Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
\square Identify which signs indicate the location of a point in a coordinate plane.
\square Recall how to plot ordered pairs on a coordinate plane.
\square
M.8.9.11: Identify the slope-intercept form $(y=m x+b)$ of an equation where m is the slope and y is the y -intercept.
\square M.8.9.12: Graph a function given the
slope-intercept form of an equation.
\square M.8.9.13: Recognize that two sets of points with the same slope may have different y intercepts.
M.8.9.14: Graph a linear equation given the slope-intercept form of an equation.

Algebra and Functions

Cluster	2019 Math COS Standard	
Analyze the relationship between proportional and nonproportional situations.	10. *Compare proportional and non-p (algebraically, graphically, numeric problems.	portional linear relationships represented in different ways ly in tables, or by verbal descriptions) to solve real-world
	Learning Objectives	Prior Knowledge Skills
	\square M.8.10.1: Define proportional and nonproportional. \square M.8.10.2: Recall that for two relationships to be proportional they must have the same unit rate and pass through the origin on a coordinate plane. \square M.8.10.3: Apply the rule of proportional relationship to real world context.	Define unit rate, proportion, and rate. Calculate unit rate by using ratios or proportions. Write a ratio as a fraction. Define proportions and proportional relationships.

Algebra and Functions

Cluster

Analyze and solve
linear equations
and systems of
two linear
equations.

2019 Math COS Standard

11. *Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.
a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x=a, a=a$, or $a=b$ (where a and b are different numbers).
b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem.

Learning Objectives

\square M.8.11.1: Define linear equation, coefficient, distributive property, and variable.
\square M.8.11.2: Recall how to solve equations for a missing variable.
\square M.8.11.3: Recall properties of operation for addition and multiplication.
\square M.8.11.4: Solve multi-step equations.
\square M.8.11.5: Identify properties of operations.
\square M.8.11.6a: Identify how many solutions the linear equation may or may not have.
\square M.8.11.7: Recall how to solve equations by using substitution.
\square M.8.11.8b: Create an equation to represent a real-world situation or mathematical problem.
\square M.8.11.9b: Analyze the solution in context of a real-world problem.

Prior Knowledge Skills

\square Recognize properties of numbers (Distributive, Associative, Commutative).
\square Define equation, inequality, and variable.
\square Set up equations and inequalities to represent the given situation, using correct mathematical operations and variables.
\square Calculate a solution or solution set by combining like terms, isolating the variable, and/or using inverse operations.
\square Test the found number or number set for accuracy by substitution.
\square Recall solving one step equations and inequalities.
\square Recognize properties of numbers (Distributive, Associative, Commutative).
\square Define equation and variable.
\square Set up an equation to represent the given situation, using correct mathematical operations and variables.
\square Calculate a solution to an equation by combining like terms, isolating the variable, and/or using inverse operations.
\square Test the found number for accuracy by substitution.
\square Example: Is 5 an accurate solution of $2(x+5)=12$.
\square Identify the unknown, in a given situation, as the variable.
\square List given information from the problem.

Algebra and Functions

Cluster	2019 Math COS Standard	
Analyze and solve linear equations and systems of two linear equations.	12. *Solve systems of two linear equations in two variables by graphing and substitution. a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems.	
	Learning Objectives	Prior Knowledge Skills
	M.8.12.1: Define variables. M.8.12.2: Recall how to estimate. M.8.12.3: Recall how to solve linear equations. \square M.8.12.4: Demonstrate how to graph solutions to linear equations. M.8.12.5: Recall how to graph ordered pairs on a Cartesian plane. M.8.12.6: Recall that linear equations can have one solution (intersecting), no solution (parallel lines), or infinitely many solutions (graph is simultaneous). M.8.12.7: Define simultaneous. M.8.12.8: Recall how to solve linear equations. \square M.8.12.9: Recall properties of operations for addition and multiplication. \square M.8.12.10: Discover that the intersection of two lines on a coordinate plane is the solution to both equations. M.8.12.11: Define point of intersection. M.8.12.12: Recall how to solve linear equations.	\square Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection. Demonstrate an understanding of an extended coordinate plane. Draw a four-quadrant coordinate plane. Draw and extend vertical and horizontal number lines. Interpret graphing points in all four quadrants of the coordinate plane in real-world situations. \square Recall how to graph points in all four quadrants of the coordinate plane.

	\square	M.8.12.13: Demonstrate how to graph on the Cartesian plane.
\squareM.8.12.14: Identify ordered pairs.		
	M.8.12.15: Recall how to solve linear equations in two variables by using substitution.	
\squareM.8.12.16: Create a word problem from given information.		
\squareM.8.12.17: Recall how to solve linear equations.		
\squareM.8.12.18: Explain how to write an equation to solve real-world mathematical problems.		

Algebra and Functions

Cluster	2019 Math COS Standard	
Explain, evaluate, and compare functions.	13. Determine whether a relation is a function, defining a function as a rule that assigns to each input (independent value) exactly one output (dependent value), and given a graph, table, mapping, or set of ordered pairs.	
	Learning Objectives	Prior Knowledge Skills
	M.8.13.1: Define function, ordered pairs, input, output. M.8.13.2: Demonstrate how to plot points on a Cartesian plane using ordered pairs. M.8.13.3: Recall how to complete input/output tables. M.8.13.4: Recognize numeric patterns. M.8.13.5: Given a function, create a rule.	\square Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection. Demonstrate an understanding of an extended coordinate plane. Draw a four-quadrant coordinate plane. Draw and extend vertical and horizontal number lines. Interpret graphing points in all four quadrants of the coordinate plane in real-world situations. \square Recall how to graph points in all four quadrants of the coordinate plane.

Algebra and Functions

Cluster	2019 Math COS Standard	
Explain, evaluate, and compare functions.	14. Evaluate functions defined by a rule or an equation, given values for the independent variable.	
	Learning Objectives	Prior Knowledge Skills
	M.8.14.1: Define functions, independent variables, and dependent variables. M.8.14.2: Evaluate a function rule given the independent variable.	\square Define equation and variable. Set up an equation to represent the given situation, using correct mathematical operations and variables. \square Calculate a solution to an equation by combining like terms, isolating the variable, and/or using inverse operations. Test the found number for accuracy by substitution. Example: Is 5 an accurate solution of $2(x+5)=12$. Identify the unknown, in a given situation, as the variable. List given information from the problem. Recalling one-step equations.

Algebra and Functions

Cluster	2019 Math COS Standard	
Explain, evaluate, and compare	15. *Compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions. a. Distinguish between linear and non-linear functions.	
functions.	Learning Objectives	Prior Knowledge Skills
	M.8.15.1: Define rate of change. M.8.15.2: Recognize linear and nonlinear functions. M.8.15.3: Recall how to read/interpret information from a table. M.8.15.4: Identify algebraic expressions. M.8.15.5: Recall how to name points on a Cartesian plane using ordered pairs. M.8.15.6: Compare and contrast the differences between linear and nonlinear functions.	Define expression, equivalent, and equivalent expressions. Recall mathematical terms such as sum, difference, etc. Recognize that a variable without a written coefficient is understood to have a coefficient of one. \square Recall how to convert mathematical terms to mathematical symbols and numbers and vice versa. Restate numerical expressions with words.

Algebra and Functions

Cluster	2019 Math COS Standard	
Use functions to model relationships between quantities.	16. *Construct a function to model a linear relationship between two variables. a. Interpret the rate of change (slope) and initial value of the linear function from a description of a relationship or from two points in a table or graph.	
	Learning Objectives	Prior Knowledge Skills
	M.8.16.1: Define function, rate of change, and initial value. M.8.16.2: Recall how to complete an input/output function table. M.8.16.3: Recall how to find the rate of change (slope) in a linear equation. \square M.8.16.4: Recall how to name points from a graph (ordered pairs). \square M.8.16.5: Analyze real-world situations to identify the rate of change and initial value from a table, graph, or description.	Solve an equation by substituting a value to find an output. Find the coordinates of an ordered pair. Recognize how the steepness of a graphed line changes vertically and horizontally.

Algebra and Functions

Cluster	2019 Math COS Standard	
Use functions to model relationships between quantities.	17. *Analyze the relationship (increasing or decreasing, linear or non-linear) between two quantities represented in a graph.	
	Learning Objectives	Prior Knowledge Skills
	M.8.17.1: Define qualitative, increase, and decrease. M.8.17.2: Distinguish the difference between linear and nonlinear functions. M.8.17.3: Recall how to plot points on a Cartesian plane. M.8.17.4: Identify parts of the Cartesian plane. M.8.17.5: Recognize ordered pairs.	\square Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection. Demonstrate an understanding of an extended coordinate plane. Draw a four-quadrant coordinate plane. Draw and extend vertical and horizontal number lines. Interpret graphing points in all four quadrants of the coordinate plane in real-world situations. \square Recall how to graph points in all four quadrants of the coordinate plane.

\square M.8.17.6: Compare and contrast the relationship between two quantities in a graph.

Data Analysis, Statistics, and Probability		
Cluster	2019 Math COS Standard	
Investigate patterns of association in bivariate data.	18. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities, describing patterns in terms of positive, negative, or no association, linear and non-linear association, clustering, and outliers.	
	Learning Objectives	Prior Knowledge Skills
	\square M.8.18.1: Define bivariate scatter plot, outlier, cluster, linear, nonlinear, and positive and negative association. \square M.8.18.2: Describe patterns found in a scatter plot. \square M.8.18.3: Demonstrate how to label and plot information on a scatter plot (dot plot). \square M.8.18.4: Distinguish the difference between positive and negative correlation. \square M.8.18.5: Recall how to describe the spread of the scatter plot (dot plot).	Define numerical data set, measure of variation, and measure of center. Relate the measure of variation, of a data set, with the concept of range. Relate the measure of the center for a numerical data set with the concept of measure of center. Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute. Compare and contrast the center and variation. Collect the data. Organize the data. Describe how attribute was measured including units of measurement. \square Identify the attribute used to create the numerical set.

Data Analysis, Statistics, and Probability

Cluster	2019 Math COS Standard

Investigate patterns of association in bivariate
data.
19. Given a scatter plot that suggests a linear association, informally draw a line to fit the data, and assess the model fit by judging the closeness of the data points to the line.

Learning Objectives

\square M.8.19.1: Define scatter plot, outlier, linear, quantitative, line of best fit, and variable.M.8.19.2: Analyze scatter plots to determine line of best fit.
\square M.8.19.3: Explain how to draw informal inferences from data distributions.
\square M.8.19.4: Recall how to summarize numerical data sets in relation to their context.
\square M.8.19.5: Recognize the concept of outlier and its relationship to the data distribution.
\square M.8.19.6: Draw an estimate for a line of best fit.

Prior Knowledge Skills

\square Define numerical data set, measure of variation, and measure of center.
\square Relate the measure of variation, of a data set, with the concept of range.
\square Relate the measure of the center for a numerical data set with the concept of measure of center.
\square Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute.
\square Compare and contrast the center and variation.
\square Collect the data.
\square Organize the data.
\squaremeasurement.
Identify the attribute used to create the numerical set.

Data Analysis, Statistics, and Probability

Cluster	2019 Math COS Standard

Investigate patterns of association in bivariate data.
20. Use a linear model of a real-world situation to solve problems and make predictions.
a. Describe the rate of change and y-intercept in the context of a problem using a linear model of a real-world situation.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.8.20.1: Define slope, intercept, linear, equation, and bivariate.
\square M.8.20.2: Recall how to determine the rate of change (slope) from a graph.
\square M.8.20.3: Identify the parts of the slopeintercept form of an equation.
\square M.8.20.4: Recognize how to read a graph.
\square M.8.20.5: Recall how to write an equation in slope-intercept form.
\square M.8.20.6: Apply the identification of the slope and the y-intercept to a real-world situation.
\square M.8.20.7: Create a graph to model a realword situation.
$\square \quad$ Define equation and variable.
\square Set up an equation to represent the given situation, using correct mathematical operations and variables.
\square Calculate a solution to an equation by combining like terms, isolating the variable, and/or using inverse operations.
\square Test the found number for accuracy by substitution.
Example: Is 5 an accurate solution of $2(x+5)=12$?.
\square Identify the unknown, in each situation, as the variable.
$\square \quad$ List given information from the problem.
\square Recalling one-step equations.

Data Analysis, Statistics, and Probability		
Cluster	2019 Math COS Standard	
Investigate patterns of association in	21. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects, using relative frequencies calculated for rows or columns to describe possible associations between the two variables.	
bivariate data.	Learning Objectives	Prior Knowledge Skills
	\square M.8.21.1: Define relative frequency and frequency. \square M.8.21.2: Design a two-way table. \square M.8.21.3: Analyze a two-way table containing categorical variables. \square M.8.21.4: Calculate relative frequency. \square M.8.21.5: Discuss relative frequency. \square M.8.21.6: Design a table. \square M.8.21.7: Recall how to calculate frequency. \square M.8.21.8: Recall how to collect data.	Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute. Compare and contrast the center and variation. Collect the data. Organize the data. Describe how attribute was measured including units of measurement. \square Identify the attribute used to create the numerical set.

Geometry and Measurement

Cluster

Understand congruence and similarity using physical models or technology.

2019 Math COS Standard

22. Verify experimentally the properties of rigid motions (rotations, reflections, and translations): lines are taken to lines, and line segments are taken to line segments of the same length; angles are taken to angles of the same measure; and parallel lines are taken to parallel lines.
a. Given a pair of two-dimensional figures, determine if a series of rigid motions maps one figure onto the other, recognizing that if such a sequence exists the figures are congruent; describe the transformation sequence that verifies a congruence relationship.

Learning Objectives

Prior Knowledge Skills

\square M.8.22.1: Define rotation, reflection, and translation.
\square M.8.22.2: Recognize translations (slides), rotations (turns), and reflections (flips).
\square M.8.22.3: Distinguish between lines and line segments.
\square M.8.22.4: Demonstrate how to measure length.
\square M.8.22.5: Demonstrate how to use a protractor to measure angles.
\square M.8.22.6: Identify parallel lines.
\square M.8.22.7: Define congruent and sequence.
\square M.8.22.8: Compare translations to reflections.
\square M.8.22.9: Compare reflections to rotations.
\square M.8.22.10: Compare rotations to translations.
\square M.8.22.11: Identify attributes of twodimensional figures.
\square M.8.22.12: Identify congruent figures.
\square Define ordered pairs.
$\square \quad$ Name the pairs of integers and/or rational numbers of a point on a coordinate plane.
\square Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
$\square \quad$ Identify which signs indicate the location of a point in a coordinate plane.
\square Recall how to plot ordered pairs on a coordinate plane.
\square Define reflections.
$\square \quad$ Define reflections.
\square Calculate the distances between points having the same first or second coordinate using absolute value.

Geometry and Measurement

Cluster	2019 Math COS Standard	
Understand congruence and	23. *Use coordinates to describe the effect of transformations (dilations, translations, rotations, and reflections) on two-dimensional figures.	
	Learning Objectives	Prior Knowledge Skills
physical models or technology.	M.8.23.1: Define dilation. M.8.23.2: Recall how to find scale factor. M.8.23.3: Give examples of scale drawings M.8.23.4: Recognize translations. M.8.23.5: Recognize reflections. M.8.23.6: Recognize rotations.	Define scale, scale drawings, length, area, and geometric figures. Locate/use scale on a map. Identify proportional relationships.

Geometry and Measurement

Cluster	2019 Math COS Standard	
Understand congruence and similarity using physical models or technology.	24. Given a pair of two-dimensional figures, determine if a series of dilations and rigid motions maps one figure onto the other, recognizing that if such a sequence exists the figures are similar; describe the transformation sequence that exhibits the similarity between them.	
	Learning Objectives	Prior Knowledge Skills
	M.8.24.1: Define similar. M.8.24.2: Recognize dilations. M.8.24.3: Recognize translations. M.8.24.4: Recognize rotations. M.8.24.5: Recognize reflections M.8.24.6: Identify similar figures. M.8.24.7: Analyze an image and its dilation to determine if the two figures are similar	Define ordered pairs. Name the pairs of integers and/or rational numbers of a point on a coordinate plane. Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. Identify which signs indicate the location of a point in a coordinate plane. Recall how to plot ordered pairs on a coordinate plane. Define reflections. Calculate the distances between points having the same first or second coordinate using absolute value.

Geometry and Measurement

Cluster	2019 Math COS Standard

Analyze parallel lines cut by a transversal.
25. *Analyze and apply properties of parallel lines cut by a transversal to determine missing angle measures.
a. Use informal arguments to establish that the sum of the interior angles of a triangle is 180 degrees.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square M.8.25.1: Define exterior angles, interior angles, vertical angles, adjacent angles, alternate interior angles, alternate exterior angles, corresponding angles, and transversal.
\square M.8.25.2: Identify attributes of triangles.
\square M.8.25.3: Identify exterior angles, interior angles, vertical angles, adjacent angles, alternate interior angles, alternate exterior angles, and corresponding angles.
\square M.8.25.4: Identify a transversal.
\square M.8.25.5: Apply properties to find missing angle measures.
\square M.8.25.6: Discover the Angle Sum Theorem (sum of the interior angles of a triangle equal 180 degrees).Define supplementary angles, complementary angles, vertical angles, adjacent angles, parallel lines, perpendicular lines, and intersecting lines.Discuss strategies for solving multi-step problems and equations.Identify all types of angles.Identify right angles and straight angles.

Geometry and Measurement

Cluster	2019 Math COS Standard

Understand and
apply the Pythagorean Theorem.
26. Informally justify the Pythagorean Theorem and its converse.

Learning Objectives	Prior Knowledge Skills

\square M.8.26.1: Define a right angle, Pythagorean Theorem, converse, and proof.
\square M.8.26.2: Recognize examples of right triangles.M.8.26.3: Demonstrate how to find square roots.M.8.26.4: Solve problems with exponents.
\square Define supplementary angles, complementary angles, vertical angles, adjacent angles, parallel lines, perpendicular lines, and intersecting lines.
\square Discuss strategies for solving multi-step problems and equations.Identify all types of angles.\square Identify right angles and straight angles.

Geometry and Measurement

Cluster	2019 Math COS Standard

Understand and
apply the
Pythagorean
Theorem.

2019 Math COS Standard
27. Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.

Learning Objectives
 Prior Knowledge Skills

\square M.8.27.1: Recall how to name points on a Cartesian plane using ordered pairs.
\square M.8.27.2: Recognize ordered pairs (x, y).
\square M.8.27.3: Solve problems using the Pythagorean Theorem, with or without a calculator.
\square M.8.27.4: Identify right triangles.
\square M.8.27.5: Demonstrate how to find square roots, with or without a calculator.
\square M.8.27.6: Solve problems with exponents, with or without a calculator.
\square Define area, special quadrilaterals, right triangles, and polygons.
\square Analyze the area of other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes.
\square Apply area formulas to solve real-world mathematical problems.Demonstrate how the area of a rectangle is equal to the sum of the area of two equal right triangles.
\square Explain how to find the area for rectangles.
\square Select manipulatives to demonstrate how to compose and decompose triangles and other shapes.
\square Recognize and demonstrate that two right triangles make a rectangle.

Geometry and Measurement

Cluster	2019 Math COS Standard
Understand and	28. *Apply the Pythagorean Theorem to determine unknown side lengths of right triangles, including real-

apply the Pythagorean Theorem.
world applications.

Learning Objectives \quad Prior Knowledge Skills

\square M.8.28.1: Discuss strategies for solving realworld and mathematical problems.
\square M.8.28.2: Solve problems using the Pythagorean Theorem, with or without a calculator.
\square M.8.28.3: Identify right triangles.
\square M.8.28.4: Demonstrate how to find square roots, with or without a calculator.
\square M.8.28.5: Solve problems with exponents, with or without a calculator.
\square Define exponent, numerical expression, algebraic expression, variable, base, power, square of a number, and cube of a number.
\square Compute a numerical expression with exponents, with or without a calculator.
$\square \quad$ Restate exponential numbers as repeated multiplication.
\square Choose the correct value to replace each variable in the expression (Substitution).

Geometry and Measurement

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Note: Students must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.
29. Informally derive the formulas for the volume of cones and spheres by experimentally comparing the volumes of cones and spheres with the same radius and height to a cylinder with the same dimensions.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

M.8.29.1: Define volume.
\square M.8.29.2: Identify cone, sphere, and cylinder.
\square M.8.29.3: Recall the meaning of a radius and diameter.
\square M.8.29.4: Compare and contrast cone, sphere, and cylinder.
\square M.8.29.5: Derive the formulas for the volume of a cone, cylinder, and sphere.

Define volume, surface area, triangles, quadrilaterals, polygons, cubes, and right prisms.
\square Discuss strategies for solving real-world mathematical problems.
\square Recall formulas for calculating volume and surface area.
\square Identify the attributes of triangles, quadrilaterals, polygons, cubes, and right prisms.

Geometry and Measurement

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Note: Students must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.

Learning Objectives	Prior Knowledge Skills

\square M.8.30.1: Define formula, volume, cone, cylinders, spheres, and height.
\square M.8.30.2: Discuss the measure of volume and give examples.
\square M.8.30.3: Solve problems with exponents, with or without a calculator.
\square M.8.30.4: Recall how to find circumference of a circle, with or without a calculator.
\square M.8.30.5: Identify parts of a circle.
\square M.8.30.6: Calculate the volume of threedimensional figures.
\square M.8.30.7: Solve real-world problems using the volume formulas for three-dimensional figures, with or without a calculator.

Prior Knowledge Skills

\square Define volume, surface area, triangles, quadrilaterals, polygons, cubes, and right prisms.
\square Discuss strategies for solving real-world mathematical problems.
\square Recall formulas for calculating volume and surface area.
\square Identify the attributes of triangles, quadrilaterals, polygons, cubes, and right prisms.
\square Define diameter, radius, circumference, area of a circle, and formula.
$\square \quad$ Identify and label parts of a circle.
\square Recognize the attributes of a circle.
\square Apply the formula of area and circumference to real world mathematical situations.

Geometry
 with
 Data Analysis

Geometry with Data Analysis

Number and Quantity

Cluster

Together, irrational numbers and rational numbers complete the real number system, representing all points on the number line, while there exist numbers beyond the real numbers called complex numbers.

2019 Math COS Standard

1. *Extend understanding of irrational and rational numbers by rewriting expressions involving radicals, including addition, subtraction, multiplication, and division, in order to recognize geometric patterns.

Learning Objectives

Prior Knowledge Skills

\square GEO.1.1: Define rational and irrational numbers and radicals.
\square GEO.1.2: Identify the product of a nonzero rational number and an irrational number as irrational.
\square GEO.1.3: Identify the sum of a rational number and an irrational number is irrational.
\square GEO.1.4: Discuss why the product of two rational numbers is rational.
\square GEO.1.5: Describe the properties of addition and multiplication rational and irrational numbers and radicals.
\square GEO.1.6: Apply properties of fractions to add, subtract, multiply, and divide rational numbers.

Define rational number.

\square Define rational numbers, horizontal, and vertical.
\square Recall how to extend a horizontal number line.
\square Recall how to extend a vertical number line.
\square Demonstrate addition and subtraction of whole numbers using a horizontal or vertical number line.
\square Give examples of rational numbers.
\square Define absolute value and additive inverse.
\square Explain that the sum of a number and its opposite is zero.
\square Locate positive, negative, and zero numbers on a number line.
\square Recall properties of addition and subtraction.
\square Model addition and subtraction using manipulatives.
\square Show addition and subtraction of 2 or more rational numbers using a number line within real-world context.
\square Define absolute value and additive inverse.
\square Show subtraction as the additive inverse.
\square Give examples of the opposite of a given number.
\square Show addition and subtraction using a number line.
\square Discuss various strategies for solving real-world and mathematical problems.
$\square \quad$ Identify properties of operations for addition and subtraction.
\square Recall the steps for solving addition and subtraction of rational numbers.

			Recognize properties of numbers (Distributive, Associative, Commutative). Recall problem solving methods. Define expanding decimals, terminating decimals, rational number, and irrational number. Identify and give examples of rational numbers. Demonstrate how to convert fractions to decimals. Recall steps for division of fractions. Recognize rational and irrational numbers.

Number and Quantity

Cluster 2019 Math COS Standard

Quantitative reasoning includes, and mathematical modeling requires, attention to units of measurement.
2. Use units as a way to understand problems and to guide the solution of multi-step problems.
a. Choose and interpret units consistently in formulas.
b. Choose and interpret the scale and the origin in graphs and data displays.
c. Define appropriate quantities for the purpose of descriptive modeling.
d. Choose a level of accuracy appropriate to limitations of measurements when reporting quantities.

Learning Objectives

\square GEO.2.1: Interpret units consistently in formulas.
\square GEO.2.2: Choose units consistently in formulas.
\square GEO.2.3: Use units as a way to guide the solution of multi-step problems.
\square GEO.2.4: Use units as a way to understand problems.
\square GEO.2.5: Convert between units of measurement within the same system.
\square GEO.2.6: Choose the scale and the origin in graphs.
\square GEO.2.7: Interpret the scale and the origin in data displays.
\square GEO.2.8: Define units of measurement.
\square GEO.2.9: Identify appropriate units of measure to best describe a real-world application.
\square GEO.2.10: Recognize the limitations for each type of measurement tool.
\square GEO.2.11: Determine the level of precision needed for real-world measurements.

Prior Knowledge Skills

\square Convert like measurement units within a given system. (Example: $120 \mathrm{~min}=2 \mathrm{hrs}$).
\square Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec.

| \square | \squareGEO.2.12: Relate how rounding effects the
 accuracy of the measurement. | |
| :--- | :--- | :--- | :--- |

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Graphs can be used to obtain exact or approximate solutions of equations, inequalities, and systems of equations and inequalitiesincluding systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).
3. Verify that the graph of a linear equation in two variables is the set of all its solutions plotted in the coordinate plane, which forms a line.

Learning Objectives
 Prior Knowledge Skills

\square GEO.5.1: Define ordered pair and coordinate plane.
\square GEO.5.2: Create linear equations with two variables.
\square GEO.5.3: Graph linear equations on coordinate axes with labels and scales.
\square GEO.5.4: Identify an ordered pair and plot it on the coordinate plane.
\square Define linear functions, nonlinear functions, slope, and y intercept.
\square Recall how to solve problems using the distributive property.
\square Recognize linear equations.
\square Identify ordered pairs.
\square Recognize ordered pairs.
\square Define similar triangles, intercept, slope, vertical, horizontal, and origin.
\square Recognize similar triangles.
\square Generate the slope of a line using given ordered pairs.
\square Analyze the graph to determine the rate of change.
\square Demonstrate how to plot points on a coordinate plane using ordered pairs from table.
$\square \quad$ Identify the slope-intercept form $(y=m x+b)$ of an equation where m is the slope and y is the y-intercept.
\square Graph a function given the slope-intercept form of an equation.
\square Recognize that two sets of points with the same slope may have different y-intercepts.
\square Graph a linear equation given the slope-intercept form of an equation.

Algebra and Functions

Focus 1: Algebra

Cluster

The structure of an equation or inequality (including, but not limited to, onevariable linear and quadratic equations, inequalities, and systems of linear equations in two variables) can be purposefully analyzed (with and without technology) to determine an efficient strategy to find a solution, if one exists, and then to justify the solution.

2019 Math COS Standard

4. Find the coordinates of the vertices of a polygon determined by a set of lines, given their equations, by setting their function rules equal and solving, or by using their graphs.

Learning Objectives

\square GEO.3.1: Define systems of equations, constraints, viable solution, and nonviable solution.
\square GEO.3.2: Determine if a solution to a system of equations or inequalities is viable or nonviable.
\square GEO.3.3: Create a system of equations or inequalities to represent the given constraints (linear).
\square GEO.3.4: Create an equation or inequality to represent the given constraints (linear).
\square GEO.3.5: Determine if there is one solution, infinite solutions, or no solutions to a system of equations or inequalities.

Prior Knowledge Skills

\square Recall how to solve linear equations.Demonstrate how to graph solutions to linear equations.Recall how to graph ordered pairs on a Cartesian plane.Recall that linear equations can have one solution (intersecting), no solution (parallel lines), or infinitely many solutions (graph is simultaneous).
\square Define simultaneous.
\square Recall how to solve linear equations.
\square Recall properties of operations for addition and multiplication.
\square Discover that the intersection of two lines on a coordinate plane is the solution to both equations.
$\square \quad$ Define point of intersection.
\square Recall how to solve linear equations.Demonstrate how to graph on the Cartesian plane.
\square Identify ordered pairs.
\square Recall how to solve linear equations in two variables by using substitution.
\square Create a word problem from given information.
\square Recall how to solve linear equations.
$\square \quad$ Explain how to write an equation to solve real-world mathematical problems.

Algebra and Functions

Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions, equations, and	5. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. Example: Rearrange the formula for the area of a trapezoid to highlight one of the bases.	
inequalities can be	Learning Objectives	Prior Knowledge Skills
used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts - in particular, contexts that arise in relation to linear, quadratic, and exponential situations.	GEO.4.1: Accurately rearrange equations and inequalities to produce equivalent forms for use in resolving situations of interest.	\square Define equivalent, simplify, term, distributive property, associative property of addition and multiplication, and the commutative property of addition and multiplication.

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Graphs can be used to obtain exact or approximate solutions of equations, inequalities, and systems of equations and inequalitiesincluding systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).
6. *Derive the equation of a circle of given center and radius using the Pythagorean Theorem.
a. Given the endpoints of the diameter of a circle, use the midpoint formula to find its center and then use the Pythagorean Theorem to find its equation.
b. Derive the distance formula from the Pythagorean Theorem.

Learning Objectives
 Prior Knowledge Skills

\square GEO.6.1: Define radius, diameter, midpoint, and Pythagorean Theorem.
\square GEO.6.2: Apply the Pythagorean Theorem to find the distance from the center to a point on the circle.
\square GEO.6.3: Derive the equation of a circle given the center and the radius.
\square GEO.6.4: Use the midpoint formula to find the center of a circle based on the endpoints of the diameter.
\square Identify parts of a circle.
\square Recall how to find circumference of a circle.
\square Recall the meaning of a radius and diameter.
\square Identify all types of angles.
\square Recognize the attributes of a circle.
\square Identify and label parts of a circle.
\square Define diameter, radius, circumference, area of a circle, and formula.

Data Analysis, Statistics, and Probability

Focus 1: Quantitative Literacy

Cluster	2019 Math COS Standard

Mathematical and statistical reasoning about data can be used to evaluate conclusions and assess risks.
7. Use mathematical and statistical reasoning with quantitative data, both univariate data (set of values) and bivariate data (set of pairs of values) that suggest a linear association, in order to draw conclusions and assess risk.
Example: Estimate the typical age at which a lung cancer patient is diagnosed, and estimate how the typical age differs depending on the number of cigarettes smoked per day.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square GEO.7.1: Define bivariate scatter plot, quantitative data, outlier, cluster, linear, nonlinear, and positive and negative association.
\square GEO.7.2: Describe patterns found in a scatter plot.
\square GEO.7.3: Demonstrate how to label and plot information on a scatter plot (dot plot).
\square GEO.7.4: Distinguish the difference between positive and negative correlation.
\square GEO.7.5: Recall how to describe the spread of the scatter plot (dot plot).
\square Define bivariate scatter plot, outlier, cluster, linear, nonlinear, and positive and negative association.
$\square \quad$ Describe patterns found in a scatter plot.
\square Demonstrate how to label and plot information on a scatter plot (dot plot).
\square Distinguish the difference between positive and negative correlation
\square Recall how to describe the spread of the scatter plot (dot plot).

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

Data arise from a context and come in two types:
quantitative (continuous or discrete) and categorical. Technology can be used to "clean" and organize data, including very large data sets, into a useful and manageable structure - a first step in any analysis of data.
8. Use technology to organize data, including very large data sets, into a useful and manageable structure.

Learning Objectives

GEO.8.1: Solve equations for y.
\square GEO.8.2: Demonstrate use of a graphing calculator, including using a table, making a graph, and finding successive approximations.
\square GEO.8.3: Analyze data from tables.
\square GEO.8.4: Summarize categorical data for two categories in two-way frequency tables.
\square GEO.8.5: Recognize possible associations and trends in the data.
\square GEO.8.6: Create a scatter plot and line of best fit using data from a spreadsheet.
\square GEO.8.7: Organize numerical data in a spreadsheet.
\square GEO.8.8: Create graphical representations from classroom-generated data to model consumer costs.
\square GEO.8.9: Create graphical representations from classroom-generated data to predict future outcomes.
\square GEO.8.10: Create graphical representations from equations to model consumer costs.
\square GEO.8.11: Create graphical representations from equations to predict future outcomes.

Prior Knowledge Skills

Demonstrate how to plot points on a Cartesian plane using ordered pairs.
\square Recall how to complete input/output tables.
\square Recognize numeric patterns.
\square Given a function, create a rule.Define linear equation, coefficient, distributive property, and variable.
\square Recall how to solve equations for a missing variable.Recall properties of operation for addition and multiplication.Solve multi-step equations.
\square Identify properties of operations.

| | \square | GEO.8.12: Create graphical representations |
| :--- | :--- | :--- | :--- |
| from tables to model consumer costs. | | |
| \square | GEO.8.13: Create graphical representations | |
| from tables to predict future outcomes. | | |$|$

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.
9. Represent the distribution of univariate quantitative data with plots on the real number line, choosing a format (dot plot, histogram, or box plot) most appropriate to the data set, and represent the distribution of bivariate quantitative data with a scatter plot. Extend from simple cases by hand to more complex cases involving large data sets using technology.

Learning Objectives Prior Knowledge Skills

\square GEO.9.1: Organize and display univariate quantitative data using plots on a real number line, using dot plots, histograms, or box plots that is most appropriate to the given data set.
\square GEO.9.2: Organize and display bivariate quantitative data using a scatter plot and extend from simple cases by hand to more complex cases involving a large data set using technology.
\square Define dot plots, line plot, stem and leaf plots, upper quartile, lower quartile, median, histograms, and box plots.
Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.
10. *Use statistics appropriate to the shape of the data distribution to compare and contrast two or more data sets, utilizing the mean and median for center and the interquartile range and standard deviation for variability.
a. Explain how standard deviation develops from mean absolute deviation.
b. Calculate the standard deviation for a data set, using technology where appropriate.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square GEO.10.1: Accurately find the center (median and mean) and spread (interquartile range and standard deviation) of data sets.
\square GEO.10.2: Present viable arguments and critique arguments of others from the comparison of the center and spread of multiple data sets.
\square GEO.10.3: Reason how standard deviation develops from the mean absolute deviation.

Define measure of variability, distribution, and measure of center.
\square Compare the measure of center and measure of variability of two distributions.
\square Relate the measure of variation with the concept of range.
\square Relate the measure of the center with the concept of mean.
\square Recall how to calculate measure of center and measure of variability.

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these
characteristics can be used to compare two or more subgroups with respect to a variable.
11. Interpret differences in shape, center, and spread in the context of data sets, accounting for possible effects of extreme data points (outliers) on mean and standard deviation.

Learning Objectives

\square GEO.11.1: Identify differences in shape, center, and spread when comparing two or more data sets,
\square GEO.11.2: Identify outliers for the mean and standard deviation.
$\square \quad$ GEO.11.3: Justify why there are differences in the shape, center, and spread of data sets.

Prior Knowledge Skills

\square Define measure of variability, distribution, and measure of center.
\square Compare the measure of center and measure of variability of two distributions.
\square Relate the measure of variation with the concept of range.
\square Relate the measure of the center with the concept of mean.
\square Recall how to calculate measure of center and measure of variability.
Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard
Sce	

Scatter plots, including plots over time, can reveal patterns, trends, clusters, and gaps that are useful in analyzing the association between two contextual variables.
12. Represent data of two quantitative variables on a scatter plot and describe how the variables are related.
a. Find a linear function for a scatter plot that suggests a linear association and informally assess its fit by plotting and analyzing residuals, including the squares of the residuals, in order to improve its fit.
b. Use technology to find the least-squares line of best fit for two quantitative variables.

Learning Objectives	Prior
\square	GEO.12.1: Create a scatter plot of data.
\square	GEO.122.

Prior Knowledge Skills

\square GEO.12.2: Calculate the fit of the function to the data by examining residuals.
\square GEO.12.3: Describe a function to its data when there is evidence of a linear association.
$\square \quad$ GEO.12.4: Use technology to find the leastsquares line of best fit for two quantitative variables.
\square Define bivariate scatter plot, outlier, cluster, linear, nonlinear, and positive and negative association.
\square Describe patterns found in a scatter plot.
\square Demonstrate how to label and plot information on a scatter plot (dot plot).
\square Distinguish the difference between positive and negative correlation.
Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard
Anal	

Analyzing the association between two quantitative variables should involve statistical procedures, such as examining (with technology) the sum of squared deviations in fitting a linear model, analyzing residuals for patterns, generating a leastsquares regression line and finding a correlation coefficient, and differentiating between correlation and causation.
13. Compute (using technology) and interpret the correlation coefficient of a linear relationship.

Learning Objectives

\square GEO.13.1: Define mean, standard deviation, population, sample, and correlation coefficient.
\square GEO.13.2: Calculate the correlation coefficient.

Prior Knowledge Skills

\square Define measure of variability, distribution, and measure of center.
\square Analyze the skew of the distributions and recognize the difference in measure of center and variability.
\square Compare the measure of center and measure of variability of two distributions.
\square Relate the measure of variation with the concept of range.
\square Relate the measure of the center with the concept of mean.
\square Recall how to calculate measure of center and measure of variability.
\square Discuss how to read and interpret a graph.
\square Define measure of variability, measure of center, inference, and mean absolute deviation.
\square Recall how to calculate measure of center and variability.
\square Recall that center is related to measure of center and measure of variability is related to variation.
\square Compare and contrast the measure of center and variability of two numerical data sets.
\square Calculate the mean absolute deviation of a data set in context.

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard	
Analyzing the	14. Distinguish between correlation and causation.	
association	Learning Objectives	Prior Knowledge Skills
between two quantitative variables should involve statistical procedures, such as examining (with technology) the sum of squared deviations in fitting a linear model, analyzing residuals for patterns, generating a leastsquares regression line, and finding a correlation coefficient, and differentiating	\square GEO.14.1: Define correlation and causation.	\square Define bivariate scatter plot, outlier, cluster, linear, nonlinear, and positive and negative association. \square Describe patterns found in a scatter plot. \square Demonstrate how to label and plot information on a scatter plot (dot plot). \square Distinguish the difference between positive and negative correlation. \square Recall how to describe the spread of the scatter plot (dot plot).

between correlation and causation.

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

Data analysis

 techniques can be used to develop models of contextual situations and to generate and evaluate possible solutions to real problems involving those contexts.15. *Evaluate possible solutions to real-life problems by developing linear models of contextual situations and using them to predict unknown values.
a. Use the linear model to solve problems in the context of the given data.
b. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the given data.

Learning Objectives Prior Knowledge Skills

\square GEO.15.1: Define slope as a rate of change.
\square GEO. 15.2: Understand that the y-intercept is the initial amount in the context of the data.
\square GEO.15.3: Understand that rate of change in the context of the data is the label of the y-axis divided by the label of the x-axis.
\square GEO.15.4: Demonstrate use of a graphing calculator, including using a table, making a graph, and finding successive approximations.
\square GEO.15.5: Given a contextual situation, interpret and defend the solution in the context of the original problem.Demonstrate how to plot points on a coordinate plane using ordered pairs from table.
\square Analyze the graph to determine the rate of change.
\square Generate the slope of a line using given ordered pairs.
\square Draw and label a coordinate plane.

Geometry and Measurement

Focus 1: Measurement

Cluster	2019 Math COS Standard

Areas and volumes of figures can be computed by determining how the figure might be obtained from simpler figures by dissection and recombination.
16. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Prior Knowledge Skills

\square Define three-dimensional figures and nets.
\square Identify three-dimensional figures.Select and create a three-dimensional figure using manipulatives.
\square Define two-dimensional figure, three-dimensional figure, and plane section.
$\square \quad$ List attributes of three-dimensional figures.
\square List attributes of two-dimensional figures.
\square Describe the relationship between two- and three-dimensional figures.
\square Recognize symmetry.

Geometry and Measurement

Focus 1: Measurement

Cluster	2019 Math COS Standard

Areas and volumes of figures can be computed by determining how the figure might be obtained from simpler figures by dissection and recombination.
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.
a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.
b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.

Learning Objectives

\square GEO.17.1: Define Cavalieri's principle, circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone; oblique, radius, diameter, height, and base.
\square GEO.17.2: Compare surface areas of similar figures and volumes of similar figures to determine a relationship using dissection arguments, Cavalieri's principle, and informal limit arguments.
\square GEO.17.3: Compare the characteristics and volume of oblique and right solids.
\square GEO.17.4: Describe the properties of a given object (cylinder, pyramid, prism, and cone).
\square GEO.17.5: Identify the necessary characteristics of a given solid to solve for its volume and surface area (cylinder, pyramid, prism, and cone).
\square GEO.17.6: Calculate the surface area of three-dimensional figures (cylinder, pyramid, prism, and cone).

Prior Knowledge Skills

Define three-dimensional figures, surface area, and nets.
\square Identify three-dimensional figures.
\square Evaluate how to apply using surface area of a three-dimensional figure to solve real-world and mathematical problems.
\square Draw nets to find the surface area of a given three-dimensional figure.
\square Recall how to calculate the area of a rectangle and triangle.
\square Select and create a three-dimensional figure using manipulatives.
\square Define diameter, radius, circumference, area of a circle, and formula.
\square Identify and label parts of a circle.
\square Recognize the attributes of a circle.
\square Apply the formula of area and circumference to real-world mathematical situations.
\square Define formula, volume, cone, cylinders, spheres, and height.
\square Discuss the measure of volume and give examples.
\square Solve problems with exponents.
\square Recall how to find circumference of a circle.
\square Identify parts of a circle.
\square Calculate the volume of three-dimensional figures.

| \square | GEO.17.7: Calculate the volume of a |
| :---: | :--- | :--- |
| | cylinder, pyramid, prism, and cone. |
| \square | GEO.17.8: Calculate the area of a circle. |
| \square | GEO.17.9: Calculate the circumference of a |
| circle. | |
| \square | GEO.17.10: Calculate the area of the base
 shape. |
| \square | GEO.17.11: Identify the relationship of
 geometric representations to real-life
 objects. |
| \square | GEO.17.12: Identify the base shape. |

\square Solve real-world problems using the volume formulas for threedimensional figures.

Geometry and Measurement

Focus 1: Measurement

Cluster	201
Constructing	
approximations of	
measurements	
with different	
tools, including	
technology, can	
support an	
understanding of	
measurement.	

2019 Math COS Standard

18. Given the coordinates of the vertices of a polygon, compute its perimeter and area using a variety of methods, including the distance formula and dynamic geometry software, and evaluate the accuracy of the results.

Learning Objectives

\square GEO.18.1: Define area, perimeter, regular polygons, inscribed polygons, circumscribed polygons, and vertices.
$\square \quad$ GEO.18.2: Analyze the given information to develop a logical process to calculate area or perimeter.
$\square \quad$ GEO.18.3: Create equations for area and perimeter based on given information.
\square GEO.18.4: Illustrate graphically an inscribed or circumscribed polygon.
\square GEO.18.5: Solve equations given the area and perimeter.
\square GEO.18.6: Plot given coordinates on the Cartesian plane.

Prior Knowledge Skills

\square Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection.
\square Demonstrate an understanding of an extended coordinate plane.
\square Draw and label a 4-quadrant coordinate plane.
$\square \quad$ Draw and extend vertical and horizontal number lines.
\square Interpret graphing points in all four quadrants of the coordinate plane in real-world situations.
\square Recall how to graph points in all four quadrants of the coordinate plane.
$\square \quad$ Define area.
\square Analyze the area of other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes.
\square Apply area formulas to solve real-world mathematical problems.
\square Demonstrate how the area of a rectangle is equal to the sum of the area of two equal right triangles.
\square Explain how to find the area for rectangles.
\square Select manipulatives to demonstrate how to compose and decompose triangles and other shapes.
$\square \quad$ Recognize and demonstrate that two right triangles make a rectangle.
$\square \quad$ Define vertices.

		Apply absolute value to find the length of a side joining points with the same first coordinate or the same second coordinate. Plot points on a coordinate plane., then connect points for the vertices to sketch a polygon. Identify ordered pairs. Recognize polygons. Define perimeter and area. Identify the length between vertices on a coordinate plane. Calculate the perimeter and area using the distance between the vertices.

Geometry and Measurement

Focus 1: Measurement

Cluster
When an object is
the image of a
known object
under a similarity
transformation, a
length, area, or
volume on the
image can be
computed by
using proportional
relationships.

2019 Math COS Standard
19. *Derive and apply the relationships between the lengths, perimeters, areas, and volumes of similar figures in relation to their scale factor.

Learning Objectives

\square GEO.19.1: Define scale factor, similarity, and proportions.
\square GEO.19.2: Compare two figures in terms of similarity.
\square GEO.19.3: Create proportional equations from given information.
\square GEO.19.4: Solve proportional equations.
\square GEO.19.5: Prove that equivalent ratios are proportions.

Prior Knowledge Skills

\square Define unit rate, proportion, and rate.
\square Create a ratio or proportion from a given word problem.
\square Calculate unit rate by using ratios or proportions.
\square Interpret a fraction as division of the numerator by the denominator. Example: (a/b=a divided by b).
\square Write a ratio as a fraction.
\square Define ratio, rate, proportion, percent, equivalent, input, output, ordered pairs, diagram, unit rate, and table.
\square Create a ratio or proportion from a given word problem, diagram, table, or equation.
\square Calculate unit rate or rate by using ratios or proportions.
\square Restate real-world or mathematical problems.
\square Construct a graph from a set of ordered pairs given in the table of equivalent ratios.
\square Compute the unit rate, unit price, and constant speed.
\square Create a proportion or ratio from a given word problem.
$\square \quad$ Identify the two units being compared.
\square Calculate a proportion for missing information.
\square Identify a proportion from given information.
\square Solve a proportion using part over whole equals percent over 100.
\square Form a ratio.
\square Define proportions and proportional relationships.
\square Demonstrate how to write ratios as a fraction.
\square Solve proportional problems.

Geometry and Measurement

Focus 1: Measurement

Cluster	2019 Math COS Standard	
When an object is	20. Derive and apply the formula for the length of an arc and the formula for the area of a sector.	
the image of a	Learning Objectives	Prior Knowledge Skills
known object under a similarity transformation, a length, area, or volume on the image can be computed by using proportional relationships.	GEO.20.1: Define arc length, radian measure, and sector. GEO.20.2: Prove the length of the arc intercepted by an angle is proportional to the radius by similarity. GEO.20.3: Prove the formula for the area of the sector. GEO.20.4: Illustrate an arc of a circle by constructing the radii of a circle.	Identify parts of a circle. Recall the meaning of a radius and diameter. Identify all types of angles. Recognize the attributes of a circle. Identify and label parts of a circle. Define diameter, radius, circumference, area of a circle, and formula.

Geometry and Measurement

Focus 2: Transformation

Cluster	2019 Math COS Standard

Applying geometric transformations to figures provides opportunities for describing the attributes of the figures preserved by the transformation and for describing symmetries by examining when a figure can be mapped onto itself.
21. *Represent transformations and compositions of transformations in the plane (coordinate and otherwise) using tools such as tracing paper and geometry software.
a. Describe transformations and compositions of transformations as functions that take points in the plane as inputs and give other points as outputs, using informal and formal notation.
b. Compare transformations which preserve distance and angle measure to those that do not.

Learning Objectives

\square GEO.21.1: Define distance, angle, input, output, plane, translation, reflection, rotation, and dilation.
\square GEO.21.2: Compare transformation that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
\square GEO.21.3: Describe transformations as functions that take points in a plane as inputs and give other points as outputs.
$\square \quad$ GEO.21.4: Represent transformation in the plane.
\square GEO.21.5: Generate an input output table.

Prior Knowledge Skills

\square Define rotation, reflection, and translation.
\square Recognize translations (slides), rotations (turns), and reflections (flips).
\square Distinguish between lines and line segments.
\square Demonstrate how to measure length.
\square Demonstrate how to use a protractor to measure angles.
\square Identify parallel lines.
\square Define square root, cube root, inverse, perfect square, perfect cube, and irrational number.
\square Define square root, expressions, and approximations.
\square Identify perfect squares and square roots.
\square Demonstrate how to locate points on a vertical or horizontal number line.
\square GEO.21.6: Compare the distance and angles of the figures from the pre-image to the image.
GEO.21.7: Measure distance and angle(s) of an image.
\square Define ordered pairs.
\square Show how to plot points on a Cartesian plane.
\square Locate the origin on the coordinate plane.
\square Identify the length between vertices on a coordinate plane.
\square Recall how to read a graph or table.
$\square \quad$ Draw and label a coordinate plane.

		Plot independent (input) and dependent (output) values on a coordinate plane. Plot pairs of integers and/or rational numbers on a coordinate plane. Arrange integers and/or rational numbers on a horizontal or vertical number line. Locate the position of integers and/or rational numbers on a horizontal or vertical number line. Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection. \square Calculate the distances between points having the same first or second coordinate using absolute value. Define number line. Demonstrate the location of positive and negative numbers on a vertical and horizontal number line. \square Calculate missing input and/or output values in a table.

Geometry and Measurement
Focus 2: Transformation

Cluster	2
Applying	
geometric	
transformations	
to figures provides	

2019 Math COS Standard
22. *Explore rotations, reflections, and translations using graph paper, tracing paper, and geometry software.
a. Given a geometric figure and a rotation, reflection, or translation, draw the image of the transformed figure using graph paper, tracing paper, or geometry software.
b. Specify a sequence of rotations, reflections, or translations that will carry a given figure onto another.
c. Draw figures with different types of symmetries and describe their attributes.

Learning Objectives
\square GEO.22.1: Define rotations, reflections, an

\square GEO.22.2: Describe the effects of rotations, reflection, and translations on two dimensional figures using coordinates.
$\square \quad$ GEO.22.3: Illustrate figures transformed by a rotation, reflection, or translation.
\square GEO.22.4: Describe the process of transforming a given figure.
GEO.22.5: Graph a figure on a coordinate plane.

Prior Knowledge Skills
\square Recognize dilations.
\square Recognize translations.
\square Recognize rotations.
\square Recognize reflections.
\square Define rotation, reflection, and translation.
\square Recognize translations (slides), rotations (turns), and reflections (flips).
\square Distinguish between lines and line segments.
\square Identify parallel lines.
\square Demonstrate how to locate points on a vertical or horizontal number line.
\square Define ordered pairs.
\square Show how to plot points on a Cartesian plane.
$\square \quad$ Locate the origin on the coordinate plane.
\square Identify the length between vertices on a coordinate plane.
\square Recall how to read a graph or table.
\square Draw and label a coordinate plane.
\square Plot independent (input) and dependent (output) values on a coordinate plane.

\square Plot pairs of integers and/or rational numbers on a coordinate plane.
\square Arrange integers and/or rational numbers on a horizontal or vertical number line.
$\square \quad$ Locate the position of integers and/or rational numbers on a horizontal or vertical number line.
\square Define quadrant, coordinate plane, coordinate axes (x-axis and yaxis), horizontal, vertical, and reflection.
\square Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.Calculate the distances between points having the same first or second coordinate using absolute value.Define number lineDemonstrate the location of positive and negative numbers on a vertical and horizontal number line.

Geometry and Measurement

Focus 2: Transformation

Cluster	2019 Math COS Standard	
Applying geometric transformations to figures provides opportunities for describing the attributes of the figures preserved by the transformation and for describing symmetries by examining when a figure can be mapped onto itself.	23. Develop definitions of rotation, reflection, and translation in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	
	Learning Objectives	Prior Knowledge Skills
	GEO.23.1: Define rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. \square GEO.23.2: Describe the effects of rotations, reflection, and translations on two dimensional figures using coordinates. GEO.23.3: Describe the effects of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. GEO.23.4: Describe the process of transforming a given figure. GEO.23.5: Illustrate figures transformed by a rotation, reflection, or translation. GEO.23.6: Recognize the type of transformation from a pre-image to an image.	Recognize dilations. Recognize translations. Recognize rotations. Recognize reflections. Analyze an image and its dilation to determine if the two figures are similar. Define dilation. Recall how to find scale factor. Give examples of scale drawings. Recognize translations. Recognize reflections. Recognize rotations. Identify parallel lines. Compare translations to reflections. Compare reflections to rotations. Compare rotations to translations. Define diameter, radius, circumference, area of a circle, and formula. Identify and label parts of a circle. Recognize the attributes of a circle. Define rotation, reflection, and translation. Recognize translations (slides), rotations (turns), and reflections (flips). \square Distinguish between lines and line segments.

Geometry and Measurement

Focus 2: Transformation

Cluster	2019 Math COS Standard	
Showing that two figures are congruent involves showing that there is a	24. *Define congruence of two figures in terms of rigid motions (a sequence of translations, rotations, and reflections); show that two figures are congruent by finding a sequence of rigid motions that maps one figure to the other. Example: $\triangle A B C$ is congruent to $\triangle X Y Z$ since a reflection followed by a translation maps $\triangle A B C$ onto $\triangle X Y Z$.	
	Learning Objectives	Prior Knowledge Skills
(translation, rotation, reflection, or glide reflection) or, equivalently, a sequence of rigid motions that maps one figure to the other.	GEO.24.1: Define congruence. GEO.24.2: Applying the definition of congruence determine if two figures are congruent. \square GEO.24.3: Illustrate a sequence of rigid motions on a coordinate plane that maps one figure to another. GEO.24.4: Illustrate a vertical and horizontal shift on a coordinate plane. Example: Rectangle PQRS has vertices P($3,5), Q(-4,2), R(3,0), 5(4,3)$. Translate PQRS vertically 3 units. GEO.24.5: Recognize composition of transformations. GEO.24.6: Graph a figure on a coordinate plane.	Recognize dilations. Recognize translations. Recognize rotations. Recognize reflections. Analyze an image and its dilation to determine if the two figures are similar. Define dilation. Recall how to find scale factor. Give examples of scale drawings. Recognize translations. Recognize reflections. Recognize rotations. Identify parallel lines. Define congruent and sequence. Compare translations to reflections. Compare reflections to rotations. Compare rotations to translations. Identify congruent figures. Define diameter, radius, circumference, area of a circle, and formula. -Identify and label parts of a circle. Recognize the attributes of a circle.

		$\square \quad$ Define rotation, reflection, and translation. \square Recognize translations (slides), rotations (turns), and reflections (flips). $\square \quad$ Distinguish between lines and line segments. \square Identify parallel lines. \square Define square root, cube root, inverse, perfect square, perfect cube, and irrational number. \square Define square root, expressions, and approximations. \square Demonstrate how to locate points on a vertical or horizontal number line. $\square \quad$ Define ordered pairs. \square Show how to plot points on a Cartesian plane. $\square \quad$ Locate the origin on the coordinate plane. $\square \quad$ Identify the length between vertices on a coordinate plane. $\square \quad$ Recall how to read a graph or table. \square Draw and label a coordinate plane. \square Plot independent (input) and dependent (output) values on a coordinate plane. $\square \quad$ Plot pairs of integers and/or rational numbers on a coordinate plane. \square Arrange integers and/or rational numbers on a horizontal or vertical number line. $\square \quad$ Locate the position of integers and/or rational numbers on a horizontal or vertical number line. \square Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection. $\square \quad$ Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. $\square \quad$ Calculate the distances between points having the same first or second coordinate using absolute value. $\square \quad$ Define number line.

\square Demonstrate the location of positive and negative numbers on a vertical and horizontal number line.
\square Calculate missing input and/or output values in a table.

Geometry and Measurement

Focus 2: Transformation

Cluster	2019 Math COS Standard

Showing that two figures are congruent involves showing that there is a rigid motion (translation, rotation, reflection, or glide reflection) or, equivalently, a sequence of rigid motions that maps one figure to the other.
25. *Verify criteria for showing triangles are congruent using a sequence of rigid motions that map one triangle to another.
a. Verify that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
b. Verify that two triangles are congruent if (but not only if) the following groups of corresponding parts are congruent: angle-side-angle (ASA), side-angle-side (SAS), side-side-side (SSS), and angleangle side (AAS).
Example: Given two triangles with two pairs of congruent corresponding sides and a pair of congruent included angles, show that there must be a sequence of rigid motions will map one onto the other.

Learning Objectives	Prior Knowledge Skills
\square GEO.25.1: Define congruent, corresponding, triangles, angles, and the concept of if and only if. \square GEO.25.2: Compare angles and sides of two triangles to determine congruency. \square GEO.25.3: Determine the lengths of sides and the measures of angles in triangles. \square GEO.25.4: Identify corresponding parts of triangles.	Define congruent and sequence. -Identify congruent figures. Recognize attributes of geometric shapes. Identify the length between vertices on a coordinate plane.

Geometry and Measurement

Focus 2: Transformation

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Showing that two figures are similar involves finding a similarity transformation (dilation or composite of a dilation with a rigid motion) or, equivalently, a sequence of similarity transformations that maps one figure onto the other.
26. Verify experimentally the properties of dilations given by a center and a scale factor.
a. Verify that a dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged.
b. Verify that the dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Learning Objectives

\square GEO.26.1: Define dilation and scale factor.
\square GEO.26.2: Apply a scale factor.
\square GEO.26.2: Illustrate when given an original figure with a line (e.g., m) through it, not through the center, a parallel line to m will be created when the dilation is performed. Example: Given a line $x=$, dilate the graph and line by 2 . What happened to the line?
\square GEO.26.3: Illustrate when given an original figure with a line (e.g., m) through its center the line will remain unchanged when the dilation is performed.
\square GEO.26.4: Illustrate dilation. Example: Find the distance of line $A B$, given $A(0,0)$ and B $(2,3)$, after dilating $A B$ by a scale factor of 1/2.
\square GEO.26.5: Determine the change in length of a line segment after dilation.
\square GEO.26.6: Discuss the properties of parallel lines.
\square GEO.26.7: Dilate a line segment.

Prior Knowledge Skills

\square Recall how to name points on a Cartesian plane using ordered pairs.
\square Recognize ordered pairs (x, y).
\square Define similar.
\square Recognize dilations.
\square Recognize translations.
\square Recognize rotations.
\square Recognize reflections.
\square Identify similar figures.
\square Analyze an image and its dilation to determine if the two figures are similar.
\square Define dilation.
\square Recall how to find scale factor.
\square Give examples of scale drawings.
\square Identify parts of the Cartesian plane.
\square Recognize ordered pairs.
\square Define function, ordered pairs, input, output.
\square Demonstrate how to plot points on a Cartesian plane using ordered pairs.

| \square | \squareGEO.26.8: Recognize whether a dilation is an
 enlargement or a reduction. | |
| :--- | :--- | :--- | :--- |

Geometry and Measurement

Focus 2: Transformation

Cluster	2019 Math COS Standard	
Showing that two figures are similar involves finding a similarity transformation (dilation or composite of a dilation with a rigid motion) or, equivalently, a sequence of similarity transformations that maps one figure onto the other.	27. *Given two figures, determine whether they are similar by identifying a similarity transformation (sequence of rigid motions and dilations) that maps one figure to the other.	
	Learning Objectives	Prior Knowledge Skills
	GEO.27.1: Establish a sequence of similarity transformations between two similar polygons. GEO.27.2: Determine if two triangles are similar based on their corresponding parts. GEO.27.3: Develop a similarity statement for two similar polygons. GEO.27.4: Identify corresponding angles and sides based on similarity statements.	Recognize dilations. Recognize translations. Recognize rotations. Recognize reflections. Define rotation, reflection, and translation. Recognize translations (slides), rotations (turns), and reflections (flips). Distinguish between lines and line segments. Identify parallel lines. Demonstrate how to locate points on a vertical or horizontal number line. Define ordered pairs. Show how to plot points on a Cartesian plane. Locate the origin on the coordinate plane. Identify the length between vertices on a coordinate plane. Recall how to read a graph or table. Draw and label a coordinate plane. Plot independent (input) and dependent (output) values on a coordinate plane. $\square \quad$ Plot pairs of integers and/or rational numbers on a coordinate plane. \square Arrange integers and/or rational numbers on a horizontal or vertical number line.

Geometry and Measurement

Focus 2: Transformation

Cluster	2019 Math COS Standard

Showing that two figures are similar involves finding a similarity transformation (dilation or composite of a dilation with a rigid motion) or, equivalently, a sequence of similarity transformations that maps one figure onto the other.
28. *Verify criteria for showing triangles are similar using a similarity transformation (sequence of rigid motions and dilations) that maps one triangle to another.
a. Verify that two triangles are similar if and only if corresponding pairs of sides are proportional and corresponding pairs of angles are congruent.
b. Verify that two triangles are similar if (but not only if) two pairs of corresponding angles are congruent (AA), the corresponding sides are proportional (SSS), or two pairs of corresponding sides are proportional, and the pair of included angles is congruent (SAS).
Example: Given two triangles with two pairs of congruent corresponding sides and a pair of congruent included angles, show there must be a set of rigid motions that maps one onto the other.

Learning Objectives	Prior Knowledge Skills
\square GEO.28.1: Define corresponding, similarity	\square Apply properties to find

GEO.28.1: Define corresponding, similarity and proportions.
$\square \quad$ GEO.28.2: Evaluate the properties of the triangles to prove congruency.
\square GEO.28.3: Create proportional equations from given information.
$\square \quad$ GEO.28.4: Evaluate the angle-side-angle (ASA), side-angle-side (SAS), and side-side-
side (SSS), Theorems to prove similarity.
\square GEO.28.5: Evaluate the AA postulate to prove similarity.
$\square \quad$ GEO.28.6: Compare two figures in terms of similarity.
\square GEO.28.7: Demonstrate that equivalent ratios are proportions.
\square GEO.28.8: Solve proportional equations.

| | | \square | Recognize translations (slides), rotations (turns), and reflections
 (flips). |
| :--- | :--- | :--- | :--- | :--- |
| | \square | Define rotation, reflection, and translation. | |
| \square | Recognize attributes of geometric shapes. | | |
| \square | Identify the length between vertices on a coordinate plane. | | |

Geometry and Measurement

Focus 3: Geometric Arguments, Reasoning, and Proof

Cluster	2019 Math COS Standard

Using technology 29. Find patterns and relationships in figures including lines, triangles, quadrilaterals, and circles, using
to construct and explore figures with constraints provides an opportunity to explore the independence and dependence of assumptions and conjectures. technology and other tools.
a. Construct figures, using technology and other tools, in order to make and test conjectures about their properties.
b. Identify different sets of properties necessary to define and construct figures.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square GEO.29.1: Construct a copy of a segment, angle, bisection of a segment, bisection ofDemonstrate how to use a protractor to draw an angle. an angle, perpendicular line, perpendicular
\square Construct segments of a given length using a ruler.
bisector of a line segment, and parallel
lines.
\square GEO.29.2: Describe a specific construction process.
\square GEO.29.3: Demonstrate the proper use of a geometric construction tools.

Geometry and Measurement

Focus 3: Geometric Arguments, Reasoning, and Proof

Cluster	2019 Math COS Standard

| Proof is the means |
| :--- | :--- |
| by which we |\quad| 30.*Develop and use precise definitions of figures such as angle, circle, perpendicular lines, parallel lines,
 and line segment, based on the undefined notions of point, line, distance along a line, and distance |
| :---: |

demonstrate whether a statement is true or false mathematically, and proofs can be communicated in a variety of ways (e.g., two-column, paragraph).
around a circular arc.

Learning Objectives	Prior Knowledge Skills
$口$	\square

\square GEO.30.1: Define angle, circle, perpendicular line, parallel line, line segment, and distance.
\square GEO.30.2: Describe angle, circle, perpendicular line, parallel line, line segment, and distance.
\square GEO.30.3: Illustrate a point, line, distance along a line, and distance around a circular arc.
\square GEO.30.4: Identify angle, circle, perpendicular line, parallel line, line segment, and distance.

Prior Knowledge Skills

\square Define exterior angles, interior angles, vertical angles, adjacent angles, alternate interior angles, alternate exterior angles, corresponding angles, and transversal.
\square Identify exterior angles, interior angles, vertical angles, adjacent angles, alternate interior angles, alternate exterior angles, and corresponding angles.
\square Identify a transversal.
\square Apply properties to find missing angle measures.
\square Define supplementary, complementary, vertical, and adjacent angles; parallel, perpendicular, and intersecting lines.
\square Identify all types of angles.
\square Identify right angles and straight angles.Demonstrate how to use a protractor to draw an angle.
$\square \quad$ Define vertices.

Geometry and Measurement

Focus 3: Geometric Arguments, Reasoning, and Proof

Cluster	2019 Math COS Standard

Proof is the means by which we demonstrate whether a statement is true or false mathematically, and proofs can be
communicated in a variety of ways (e.g., twocolumn, paragraph).
31. Justify whether conjectures are true or false in order to prove theorems and then apply those theorems in solving problems, communicating proofs in a variety of ways, including flow chart, twocolumn, and paragraph formats.
a. Investigate, prove, and apply theorems about lines and angles, including but not limited to: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; the points on the perpendicular bisector of a line segment are those equidistant from the segment's endpoints.
b. Investigate, prove, and apply theorems about triangles, including but not limited to: the sum of the measures of the interior angles of a triangle is 180°; the base angles of isosceles triangles are congruent; the segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length; a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem using triangle similarity.
c. Investigate, prove, and apply theorems about parallelograms and other quadrilaterals, including but not limited to both necessary and sufficient conditions for parallelograms and other quadrilaterals, as well as relationships among kinds of quadrilaterals.
Example: Prove that rectangles are parallelograms with congruent diagonals.

Learning Objectives

\square GEO.31.1: Define vertical angle, transversal, parallel lines, alternate interior angles, corresponding angles, perpendicular bisector, line segment, equidistant, endpoints, interior angles of a triangle, base angles of isosceles triangles, isosceles triangles, midpoint, median, intersection, opposite sides, opposite

Prior Knowledge Skills

\square Define a right angle, Pythagorean Theorem, converse, and proof.
\square Define exterior angles, interior angles, vertical angles, adjacent angles, alternate interior angles, alternate exterior angles, corresponding angles, and transversal.
\square Identify attributes of triangles.
$\square \quad$ Identify exterior angles, interior angles, vertical angles, adjacent angles, alternate interior angles, alternate exterior angles, and corresponding angles.
$\square \quad$ Identify a transversal.

Geometry and Measurement

Focus 3: Geometric Arguments, Reasoning, and Proof

Cluster	2019 Math COS Standard

Proofs of

 theorems can sometimes be made with transformations, coordinates, or algebra; all approaches can be useful, and in some cases, one may provide a more accessible or understandable argument than another.
32. Use coordinates to prove simple geometric theorems algebraically.

Learning Objectives

\square GEO.32.1: Apply formulas, and properties of polygons, angles, and lines to draw conclusions from the given information.
$\square \quad$ GEO.32.2: Identify properties of perpendicular and parallel lines, properties of polygons.
\square GEO.32.3: Illustrate polygons created by given coordinates on a coordinate plane.
\square GEO.32.4: Identify distance formula, circle formula, Pythagorean Theorem, midpoint.

Prior Knowledge Skills

\square Define quadrant, coordinate plane, coordinate axes (x-axis and y axis), horizontal, vertical, and reflection.
\square Demonstrate an understanding of an extended coordinate plane.Draw and label a 4-quadrant coordinate plane.Draw and extend vertical and horizontal number lines.
\square Interpret graphing points in all four quadrants of the coordinate plane in real-world situations.
\square Recall how to graph points in all four quadrants of the coordinate plane.
$\square \quad$ Define ordered pairs.
$\square \quad$ Name the pairs of integers and/or rational numbers of a point on a coordinate plane.
\square Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
$\square \quad$ Identify which signs indicate the location of a point in a coordinate plane.
\square Recall how to plot ordered pairs on a coordinate plane.
$\square \quad$ Identify the length between vertices on a coordinate plane.
-Calculate the perimeter and area using the distance between the vertices.
-Define a right angle, Pythagorean Theorem, converse, and proof.
-Recognize examples of right triangles.
-Demonstrate how to find square roots.
-Solve problems with exponents.

Geometry and Measurement

Focus 3: Geometric Arguments, Reasoning, and Proof

Cluster	2019 Math COS Standard

Proofs of theorems can sometimes be made with transformations, coordinates, or algebra; all approaches can be useful, and in some cases, one may provide a more accessible or understandable argument than another.
33. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems. Example: Find the equation of a line parallel or perpendicular to a given line that passes through a given point.

Learning Objectives

\square GEO.33.1: Define slope, point slope formula, slope-intercept formula, standard form of a line, parallel lines, and perpendicular lines.
\square GEO.33.2: Demonstrate and explain algebraically how perpendicular lines have only one common point.
\square GEO.33.3: Demonstrate and explain algebraically how parallel lines have no common points.
\square GEO.33.4: Write and solve equations of parallel and perpendicular lines.
\square GEO.33.5: Illustrate graphically how perpendicular lines have only one common point.
\square GEO.33.6: Illustrate graphically how parallel lines have no common points.
\square GEO.33.7: Write an equation of a line in slope intercept form.
\square GEO.33.8: Find the slope of a given line.

Prior Knowledge Skills

\square Define slope, intercept, linear, equation, and bivariate.
\square Recall how to determine the rate of change (slope) from a graph.
\square Identify the parts of the slope-intercept form of an equation.
\square Recognize how to read a graph.
\square Recall how to write an equation in slope-intercept form.
\square Apply the identification of the slope and the y-intercept to a realworld situation.
$\square \quad$ Create a graph to model a real-word situation.
\square Define proportional relationships, unit rate, and slope.
\square Demonstrate how to graph on a Cartesian plane
$\square \quad$ Identify the slope-intercept form ($\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{b}$) of an equation where m is the slope and y is the y-intercept.
\square Define linear functions, nonlinear functions, slope, and y-intercept.
\square Recognize linear equations.
\square Identify ordered pairs.
\square Recognize ordered pairs.
\square Generate the slope of a line using given ordered pairs.
$\square \quad$ Identify the slope-intercept form ($\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{b}$) of an equation where m is the slope and y is the y-intercept.
\square Graph a function given the slope-intercept form of an equation.
\square Recognize that two sets of points with the same slope may have different y-intercepts.

| \square | \squareGraph a linear equation given the slope-intercept form of an
 equation. |
| :--- | :--- | :--- |

Geometry and Measurement
Focus 4: Solving Applied Problems and Modeling in Geometry

Cluster	2019 Math COS Standard

Recognizing congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry, in real-world contexts provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.
34. *Use congruence and similarity criteria for triangles to solve problems in real-world contexts.

Learning Objectives

\square GEO.34.1: Develop an equation from given information to prove congruence or similarity.
\square GEO.34.2: Illustrate congruence and similarity in geometric figures.
\square GEO.34.3: Apply proportional reasoning to real-world scenarios.
\square GEO.34.4: Solve proportions.

Prior Knowledge Skills

\square Analyze an image and its dilation to determine if the two figures are similar.
\square Identify similar figures.
\square Define similar.
\square Identify congruent figures.
\square Identify attributes of two-dimensional figures.
\square Compare rotations to translations.
\square Compare reflections to rotations.
\square Compare translations to reflections.
\square Define congruent and sequence.
\square Apply the rule of proportional relationship to real-world context.
\square Recognize similar triangles.
\square Define similar triangles, intercept, slope, vertical, horizontal, and origin.
\square Demonstrate how to plot points on a coordinate plane using ordered pairs from table.
\square Analyze the graph to determine the rate of change.
\square Generate the slope of a line using given ordered pairs.
\square Graph a function given the slope-intercept form of an equation.
\square Identify the slope-intercept form $(\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{b})$ of an equation where m is the slope and y is the y-intercept.
\square Graph a linear equation given the slope-intercept form of an equation.
\square Recognize that two sets of points with the same slope may have different y-intercepts.

		$\square \quad$ Identify the slope-intercept form $(y=m x+b)$ of an equation where m is the slope and y is the y-intercept. \square Recall that for a relationship to be proportional, the graph must pass through the origin. $\square \quad$ Demonstrate how to graph on a Cartesian plane. \square Recall that for a relationship to be proportional, both variables must start at zero. Identify the unit rate of two quantities. Recall how to write a ratio of two quantities as a fraction. Recall equivalent ratios and origin on a coordinate (Cartesian) plane. \square Define proportional, independent variable, dependent variable, and unit rate. Identify proportional relationships. Locate/use scale on a map. Define scale, scale drawings, length, area, and geometric figures. Use a table or graph to determine whether two quantities are proportional. Define equivalent ratios and origin. Define unit rate, proportions, area, length, and ratio. Recognize polygons. Restate real-world problems or mathematical problems. Calculate unit rate or rate by using ratios or proportions. Create a ratio or proportion from a given word problem, diagram, table, or equation. Define ratio, rate, proportion, percent, equivalent, input, output, ordered pairs, diagram, unit rate, and table. Form a ratio. Solve a proportion using part over whole equals percent over 100. Identify a proportion from given information. Calculate a proportion for missing information. Create a proportion or ratio from a given word problem.

Geometry and Measurement

Focus 4: Solving Applied Problems and Modeling in Geometry

Cluster

Recognizing

 congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry, in real-world contexts provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.
2019 Math COS Standard

35. *Discover and apply relationships in similar right triangles.
a. Derive and apply the constant ratios of the sides in special right triangles $\left(45^{\circ}-45^{\circ}-90^{\circ}\right.$ and 30° -$60^{\circ}-90^{\circ}$).
b. Use similarity to explore and define basic trigonometric ratios, including sine ratio, cosine ratio, and tangent ratio.
c. Explain and use the relationship between the sine and cosine of complementary angles.
d. Demonstrate the converse of the Pythagorean Theorem.
e. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems, including finding areas of regular polygons.

Learning Objectives
\square GEO.35.1: Define trigonometric (sine, cosine, and tangent) ratios for acute angles, complementary angles, and Pythagorean Theorem.
\square GEO.35.2: Simplify, multiply, and divide radicals.
\square GEO.35.3: Discuss the relationship between sine and cosine angles within a triangle.
\square GEO.35.4: Solve equations using trigonometric ratios.
\square GEO.35.5: Apply properties of similarity to demonstrate the trigonometric ratios of right triangles.
\square GEO.35.6: Use Pythagorean Theorem to find the missing side of a right triangle.

Prior Knowledge Skills

\square Demonstrate how to find square roots.
\square Identify right triangles.
\square Solve problems using the Pythagorean Theorem.
\square Recognize ordered pairs (x, y).
\square Recall how to name points on a Cartesian plane using ordered pairs.
\square Identify right triangles.
\square Solve problems using the Pythagorean Theorem.
\square Discuss strategies for solving real-world and mathematical problems.
\square Recognize examples of right triangles.
\square Define a right angle, Pythagorean Theorem, converse, and proof.
\square Apply properties to find missing angle measures.
$\square \quad$ Identify a transversal.

Solve a proportion using part over whole equals percent over 100.
\square Identify a proportion from given information.
\square Calculate a proportion for missing information.
\square Create a proportion or ratio from a given word problem.

Geometry and Measurement

Focus 4: Solving Applied Problems and Modeling in Geometry

Cluster	2019 Math COS Standard

Recognizing congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry, in real-world contexts provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.
36. Use geometric shapes, their measures, and their properties to model objects and use those models to solve problems.

Learning Objectives	Prior Knowledge Skills
$口$	

\square GEO.36.1: Estimate the dimensions of a $\quad \square$ Recognize attributes of geometric shapes. given object.
\square GEO.36.2: Discuss the properties of a given object.
$\square \quad$ GEO.36.3: Identify the relationship of geometric representations to real-life objects.

Geometry and Measurement
Focus 4: Solving Applied Problems and Modeling in Geometry

Cluster	2019 Math COS Standard

Recognizing congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry, in real-world contexts provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.
37. Investigate and apply relationships among inscribed angles, radii, and chords, including but not limited to: the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

Learning Objectives
 \square GEO.37.1: Define inscribed angles, central

 angles, circumscribed angles, radius, chord, tangent, secant, and diameter.\square GEO.37.2: Define inscribed and circumscribed circle of a triangle.
\square GEO.37.3: Apply knowledge of arcs, angles, and chords to solve circle related problems.
\square GEO.37.4: Determine angle values for all angles formed in the exterior, interior and on the circle.
\square GEO.37.5: Determine lengths of intersecting chords and secants.
\square GEO.37.6: Discuss the relationship among inscribed angles, radii, and chords.
\square GEO.37.7: Illustrate inscribed and circumscribed circles of a triangle and quadrilaterals inscribed in a circle.
\square GEO.37.8: Illustrate radii, chords, diameters, tangents to curve, central, inscribed, and circumscribed angles.

Prior Knowledge Skills

I Identify parts of a circle.
\square Recall how to find circumference of a circle.
\square Recall the meaning of a radius and diameter.
\square Identify all types of angles.
\square Recognize the attributes of a circle.
\square Identify and label parts of a circle.
\square Define diameter, radius, circumference, area of a circle, and formula.

Geometry and Measurement

Focus 4: Solving Applied Problems and Modeling in Geometry

Cluster	2019 Math COS Standard

Experiencing the mathematical modeling cycle in problems involving geometric concepts, from the
simplification of the real problem through the solving of the simplified problem, the interpretation of its solution, and the checking of the solution's feasibility, introduces geometric techniques, tools, and points of view that are valuable to problem-solving.
38. Use the mathematical modeling cycle involving geometric methods to solve design problems.

Examples: Design an object or structure to satisfy physical constraints or minimize cost; work with typographic grid systems based on ratios; apply concepts of density based on area and volume.

Learning Objectives

\square GEO.38.1: Define density, area, and volume.
\square GEO.38.2: Illustrate a design conflict (e.g., draw a chair and a desk where the chair will not fit under the desk).
\square GEO.38.3: Discuss the relationship between units in each modeling situation.
\square GEO.38.4: Calculate density (D), mass (m) or volume (V) using the formula, $D=m / V$.
\square GEO.38.5: Recognize appropriate units for various situations.
\square Define volume.
\square Derive the formulas for the volume of a cone, cylinder, and sphere.
\square Calculate the volume of three-dimensional figures.
\square Solve real-world problems using the volume formulas for threedimensional figures.

Algebra 1

 With Probability

Algebra 1 with Probability

Number and Quantity

Cluster

Together, irrational numbers and rational numbers complete the real number system, representing all points on the number line, while there exist numbers beyond the real numbers called complex numbers.

2019 Math COS Standard

1. Explain how the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for an additional notation for radicals using rational exponents.

Learning Objectives

Prior Knowledge Skills
\square ALGI. 1.1: Define exponent, integer, rational number, and radicals.
\square ALGI. 1.2: Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values.
$\square \quad$ ALGI. 1.3: Use notation for radicals in terms of rational exponents.
\square ALGI. 1.4: Apply the properties of integer exponents to generate equivalent numerical expressions.
\square ALGI. 1.5: Know the properties of integer exponents.
$\square \quad$ ALGI. 1.6: Write numerical expressions involving whole-number exponents.
\square ALGI. 1.7: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.
\square Demonstrate difference of scientific notation symbol between paper and calculator.
\square Discuss the real-world application of scientific notation (very large or very small quantities).
\square Recall properties of exponents.
\square Recall how to write numbers in scientific notation.
\square Demonstrate that when dividing powers of like bases; subtract the exponents (Property of quotient of powers).
\square Restate exponential numbers as repeated multiplication.
\square Define exponent, integer, rational number, and radical.

Number and Quantity

Cluster

Together, irrational numbers and rational numbers complete the real number system, representing all points on the number line, while there exist numbers beyond the real numbers called complex numbers.

2019 Math COS Standard

2. *Rewrite expressions involving radicals and rational exponents using the properties of exponents.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square ALGI. 2.1: Rewrite expressions involving radicals using the properties of exponents.
\square Compute problems with adding and subtracting integers.
\square Restate exponential numbers as repeated multiplication.
$\square \quad$ ALGI. 2.2: Rewrite expressions involving rational exponents using the properties of exponents.
\square ALGI. 2.3: Recognize the properties of exponents.
\square Compute a numerical expression with positive exponents.
\square Recognize to subtract exponents when dividing terms with like bases (Property of quotient of powers).
\square Recognize to add exponents when multiplying terms with like bases (Property of product of powers).
\square Restate zero exponents as $1\left(x^{0}=1\right)$.
\square Restate negative exponents as positive exponents in the form 1/ x^{y}.
\square Define exponent, power, coefficient, integers, equivalent, and numerical expression.
\square Identify perfect squares and square roots.
\square Recall how to compare numbers.
\square Identify properties of exponents.
\square Define square root, expressions, and approximations.
$\square \quad$ Identify and give examples of rational numbers.
\square Recognize the mathematical operations of rational numbers in any form, including converting between forms. (Ex. 0.25=1/4 =25\%).
\square Define rational numbers.
\square Restate exponential numbers as repeated multiplication.
\square Define exponent.

Number and Quantity

Cluster

Together, irrational numbers and rational numbers complete the real number system, representing all points on the number line, while there exist numbers beyond the real numbers called complex numbers.

2019 Math COS Standard

3. Define the imaginary number i such that $\mathcal{F}^{2}=-1$.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square ALGI. 3.1: Define rational and irrational numbers.
\square ALGI. 3.2: Identify the product of a nonzero rational number and an irrational number as irrational.
\square ALGI. 3.3: Identify the sum of a rational number and an irrational number is irrational.
\square ALGI. 3.4: Discuss why the product of two rational numbers is rational.
\square ALGI. 3.5: Discuss why the sum of two rational numbers is rational.
\square ALGI. 3.6: Describe the properties of addition and multiplication.
\square ALGI. 3.7: Apply properties of fractions to add, subtract, multiply, and divide rational numbers.
\square ALGI. 3.8: Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
\square Combine like terms of a given expression.
\square Show on a number line numbers that are equal distance from 0 and on opposite sides of 0 have opposite signs.
\square Discover that the opposite of the opposite of a number is the number itself.
\square Give examples of positive and negative numbers to represent quantities having opposite directions in real-world contexts.

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

Expressions can be rewritten in equivalent forms by using algebraic properties, including properties of addition, multiplication, and exponentiation, to make different characteristics or features visible.
4. Interpret linear, quadratic, and exponential expressions in terms of a context by viewing one or more of their parts as a single entity.
Example: Interpret the accrued amount of investment $P(1+r)^{t}$, where P is the principal and r is the interest rate, as the product of P and a factor depending on time t .

Learning Objectives	Prior Knowledge Skills

\square ALGI.4.1: Define linear, quadratic, and exponential functions.
\square ALGI.4.2: Classify an expression as linear, quadratic or exponential from a table.
\square ALGI.4.3: Classify an expression as linear, quadratic or exponential from an equation.
\square ALGI.4.4: Classify an expression as linear, quadratic or exponential from a graph.
$\square \quad$ ALGI.4.5: Define terms, factors, and coefficients.
\square ALGI.4.6: Identify factors in linear, exponential, and quadratic expressions.
\square ALGI.4.7: Identify coefficients in linear, exponential, and quadratic expressions.
$\square \quad$ ALGI.4.8: Identify terms in linear, exponential, and quadratic expressions. ALGI.4.9: Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient). ALGI.4.10: Recognize one or more parts of an exponential expression as a single entity. ALGI.4.11: Recognize one or more parts of a
\square Recognize ordered pairs.
\square Identify ordered pairs.
\square Recognize linear equations.
\square Recall how to solve problems using the distributive property.
\square Define linear functions, nonlinear functions, slope, and y-intercept.

	quadratic expression as a single entity. ALGI.4.12: Recognize one or more parts of a linear expression as a single entity.	

Algebra and Functions

Focus 1: Algebra		
Cluster Expressions can be rewritten in equivalent forms by using algebraic properties, including properties of addition, multiplication, and exponentiation, to make different characteristics or features visible.	2019 Math COS Standard	
	5. *Use the structure of an expression to identify ways to rewrite it.	
	Learning Objectives	Prior Knowledge Skills
	ALGI.5.1: Define equivalent expressions. ALGI.5.2: Rewrite an exponential expression in an alternative way. \square ALGI.5.3: Rewrite a quadratic expression in an alternative way. \square ALGI.5.4: Rewrite a linear expression in an alternative form. \square ALGI.5.5: Understand that rewriting an expression in different forms in a problem context can shed light on the problem. \square ALGI.5.6: Recall properties of exponents.	Give examples of the properties of operations including distributive, commutative, and associative. Recall how to find the greatest common factor. Combine like terms of a given expression. Recognize the property demonstrated in a given expression. Simplify expressions with parentheses (Ex. $5(4+x)=20+5 x$). Simplify an expression by dividing by the greatest common factor (Ex. $18 x+6 y=6(3 x+y)$. \square Define linear expression, rational, coefficient, and rational coefficient.

Algebra and Functions

Focus 1: Algebra

Cluster
Expressions can

2019 Math COS Standard

6. *Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor quadratic expressions with leading coefficients of one and use the factored form to reveal the zeros of the function it defines.
b. Use the vertex form of a quadratic expression to reveal the maximum or minimum value and the axis of symmetry of the function it defines; complete the square to find the vertex form of quadratics with a leading coefficient of one.
c. Use the properties of exponents to transform expressions for exponential functions. Example: Identify percent rate of change in functions such as $\mathrm{y}=(1.02)^{\mathrm{t}}, \mathrm{y}=(0.97)^{\mathrm{t}}, \mathrm{y}=(1.01)^{12 \mathrm{t}}, \mathrm{y}=$ (1.2 ${ }^{\text {t/10 }}$, and classify them as representing exponential growth or decay.

Learning Objectives
\square ALGI.6.1: Convert an expression to an alternative format.
\square ALGI.6.2: Recognize the best format for a specific application.
\square ALGI.6.3: Match equivalent expressions written in different forms.
\square ALGI.6.4a: Define factor, quadratic expression and zero product property.
\square ALGI.6.5a: Factor a quadratic expression.
\square ALGI.6.6a: Use the zero-product property to reveal the zeros in the function.
$\square \quad$ ALGI.6.7a: Solve a one-step equation.
\square ALGI.6.8a: Solve a two-step equation.
\square ALGI.6.9a: Determine the Greatest Common Factor (GCF).

Prior Knowledge Skills

\square Identify how many solutions the linear equation may or may not have.
\square Recall how to solve problems using the distributive property
\square Explain the distributive property.
\square Recall solving one-step equations.

\begin{tabular}{|c|c|c|}
\hline \& \square
\square
\square
\square
\square

\square
\square
\square

\square \& | ALGI.6.10b: Define maximum and minimum value. |
| :--- |
| ALGI.6.11b: Explain the steps for completing the square. |
| ALGI.6.12b: Given -ALGI a quadratic expression in which the square has already been completed, determine the maximum or minimum values. |
| ALGI.6.13c: Define roots. |
| ALGI.6.14c: Find the equation using the distributive property. |
| ALGI.6.15c: Locate and identify the roots on a graph using the x -intercepts. |
| ALGI.6.16c: Take given roots and convert into a one-step equation set equal to zero. |

\hline
\end{tabular}

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

Expressions can be rewritten in equivalent forms by using algebraic properties, including properties of addition, multiplication, and exponentiation, to make different characteristics or features visible.
7. *Add, subtract, and multiply polynomials, showing that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication.

Learning Objectives

\square ALG1.7.1: Combine like terms of a given expression
\square ALG1.7.2: Define monomial, term, binomial, trinomial, and polynomial.
\square ALG1.7.3: Multiply polynomial expressions (quadratic).
$\square \quad$ ALG1.7.4: Multiply polynomial expressions (linear).
\square ALG1.7.5: Subtract polynomial expressions.
\square ALG1.7.6: Add polynomial expressions.
\square ALG1.7.7: Use order of operations to evaluate and simplify algebraic and numerical expressions.
$\square \quad$ ALG1.7.8: Identify the terms in a polynomial expression.
\square ALG1.7.9: Explain the distributive property.

Prior Knowledge Skills

\square Identify properties of exponents.
\square Give examples of the properties of operations including distributive, commutative, and associative.
\square Recall how to find the greatest common factor.
\square Combine like terms of a given expression.
\square Recognize the property demonstrated in a given expression.
\square Simplify expressions with parentheses (Ex. $5(4+x)=20+5 x)$.
\square Simplify an expression by dividing by the greatest common factor (Ex. $18 x+6 y=6(3 x+y)$.
\square Define linear expression, rational, coefficient, and rational coefficient.
\square Combine terms that are alike of a given expression.

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

Finding solutions to an equation, inequality, or system of equations or inequalities requires the checking of candidate solutions, whether generated analytically or graphically, to ensure that solutions are found and that those found are not extraneous.
8. Explain why extraneous solutions to an equation involving absolute values may arise and how to check to be sure that a candidate solution satisfies an equation.

Learning Objectives

ALGI. 8.1: Define integers.
\square ALGI. 8.2: Demonstrate the location of positive and negative numbers on a vertical and horizontal number line.
$\square \quad$ ALGI. 8.3: Give examples of positive and negative numbers to represent quantities having opposite directions in real-world contexts.
$\square \quad$ ALGI. 8.4: Discuss the measure of centering of 0 in relationship to positive and negative numbers.
$\square \quad$ ALGI. 8.5: Substitute for the variable to find the value of a given expression.
\square ALGI. 8.6: Explain the meaning of absolute value and determine the absolute value of rational numbers in real-world contexts.
\square ALGI. 8.7: Compare and order rational numbers and absolute value of rational numbers with and without a number line to solve real-world and mathematical problems.

Prior Knowledge Skills

$\square \quad$ Recall how to order positive and negative numbers. (Use number line if needed).
$\square \quad$ Evaluate a statement about order using comparisons of absolute value.
$\square \quad$ Locate the position of integers and/or rational numbers on a horizontal or vertical number line.
\square Arrange integers and/or rational numbers on a horizontal or vertical number line.
$\square \quad$ Recognize the absolute value of a rational number is its' distance from 0 on a vertical and horizontal number line.

Algebra and Functions

Focus 1: Algebra

Cluster

The structure of an equation or inequality (including, but not limited to, one-variable linear and quadratic equations, inequalities, and systems of linear equations in two variables) can be purposefully analyzed (with and without technology) to determine an efficient strategy to find a solution, if one exists, and then to justify the solution.

2019 Math COS Standard

9. *Select an appropriate method to solve a quadratic equation in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(\mathrm{x}-\boldsymbol{p})^{2}=\mathrm{q}$ that has the same solutions. Explain how the quadratic formula is derived from this form.
b. Solve quadratic equations by inspection (such as $x^{2}=49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation, and recognize that some solutions may not be real.

Learning Objectives

Prior Knowledge Skills

\square ALGI.9.1: Define quadratic equation and zero product property.
\square ALGI.9.2: Solve one-step equations using addition and subtraction that are set equal to zero.
$\square \quad$ ALGI.9.3: Solve two-step equations using addition and subtraction that are set equal to zero.
\square ALGI.9.4a: Define completing the square.
\square ALGI.9.5a: Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions.
\square ALGI.9.6a: Derive the quadratic formula from the form $(x-p)^{2}=q$.
\square ALGI.9.7b: Define quadratic formula, factoring, square root, complex number, and real number.
\square Identify perfect squares and square roots.
\square Define square root, expressions, and approximations.
\square Explain the distributive property.
\square Calculate an expression in the correct order (Ex. exponents, mult./div. from left to right and add/sub. from left to right).
\square Recalling one-step equations.
\square List given information from the problem.
\square Identify the unknown, in each situation, as the variable.
\square Test the found number for accuracy by substitution. Example: Is 5 an accurate solution of $2(x+5)=12$?
\square Calculate a solution to an equation by combining like terms, isolating the variable, and/or using inverse operations.
$\square \quad$ Define equation and variable.
\square Set up an equation to represent the given situation, using correct mathematical operations and variables.
\square Recognize the correct order to solve expressions with more than one operation.
\square Calculate a numerical expression (Ex. $V=4 \times 4 \times 4$).

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

The structure of an equation or inequality (including, but not limited to, one-variable linear and quadratic equations, inequalities, and systems of linear equations in two variables) can be purposefully analyzed (with and without technology) to determine an efficient strategy to find a solution, if one exists, and then to justify the solution.
10. Select an appropriate method to solve a system of two linear equations in two variables.
a. Solve a system of two equations in two variables by using linear combinations; contrast situations in which use of linear combinations is more efficient with those in which substitution is more efficient.
b. Contrast solutions to a system of two linear equations in two variables produced by algebraic methods with graphical and tabular methods.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square ALGI.10.1: Solve a system of equations using
\square Solve a system of equation by graphing. three methods (Substitution, Elimination, and Graphing.
\square ALGI.10.2: Distinguish the similarities and differences between the three methods of solving systems of equations.
\square Solve a system of equation by elimination.
\square Solve a system of equation by substitution.
\square Understand the meaning of the solution to a system of equations.
\square Graph a linear equation.

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

Expressions, equations, and inequalities can be used to analyze and make
predictions, both within mathematics and as mathematics is applied in different contexts - in particular, contexts that arise in relation to linear, quadratic, and exponential situations.
11. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions.

Learning Objectives

\square ALGI.11.1: Solve the equation represented by the real-world situation.
\square ALGI.11.2: Set up an equation to represent the given situation, using correct mathematical operations and variables.
\square ALGI.11.3: Given a contextual situation, interpret and defend the solution in the context of the original problem.
\square ALGI.11.4: Define equation, expression, variable, equality and inequality.
\square ALGI.11.5: Create inequalities with one variable (Exponential, Quadratic, Linear).
\square ALGI.11.6: Create equalities with one variable (Exponential, Quadratic, Linear).
\square ALGI.11.7: Solve two-step equations and inequalities.
$\square \quad$ ALGI.11.8: Solve one-step equations and inequalities using the four basic operations.
\square ALGI.11.9: Compare and contrast equations and inequalities.
\square ALGI.11.10: Recognize inequality symbols including greater than, less than, greater than equal to and less than equal to.

Prior Knowledge Skills

\square Test the found number or number set for accuracy by substitution.
\square Set up equations and inequalities to represent the given situation, using correct mathematical operations and variables.Define equation, inequality, and variable.Convert mathematical terms to mathematical symbols and numbers.

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

Expressions, equations, and inequalities can be used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts - in particular, contexts that arise in relation to linear, quadratic, and exponential situations.

2019 Math COS Standard

12. *Create equations in two or more variables to represent relationships between quantities in context; graph equations on coordinate axes with labels and scales and use them to make predictions. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions.

Learning Objectives

\square ALGI.12.1: Solve the equations represented by real-world situations.
\square ALGI.12.2: Set up an equation to represent the given situation, using correct mathematical operations and variables.
\square ALGI.12.3: Given a contextual situation, interpret and defend the solution in the context of the original problem.
\square ALGI.12.4: Explain how to draw informal inferences from data distributions.
\square ALGI.12.5: Define ordered pair and coordinate plane.
\square ALGI.12.6: Create equations with two variables (exponential, quadratic and linear).
$\square \quad$ ALGI.12.7: Graph equations on coordinate axes with labels and scales (exponential, quadratic, and linear).
$\square \quad$ ALGI.12.8: Identify an ordered pair and plot it on the coordinate plane.

Prior Knowledge Skills

\square Demonstrate how to plot points on a coordinate plane using ordered pairs from a table.
\square Plot independent (input) and dependent (output) values on a coordinate plane.
$\square \quad$ Draw and label a coordinate plane.
\square Define dependent variable, independent variable, ordered pairs, input, output, and coordinate plane.

Algebra and Functions

Focus 1: Algebra

Cluster	2019 Math COS Standard

Expressions, equations, and inequalities can be used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts - in particular, contexts that arise in relation to linear, quadratic, and exponential situations.
13. *Represent constraints by equations and/or inequalities, and solve systems of equations and/or inequalities, interpreting solutions as viable or nonviable options in a modeling context. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square ALGI.13.1: Define systems of equations, constraints, viable solution, and nonviable solution.
\square ALGI.13.2: Create a system of equations or inequalities to represent the given constraints (linear).
\square ALGI.13.3: Create an equation or inequality to represent the given constraints (linear).
\square ALGI.13.4: Determine if a solution to a system of equations or inequalities is viable or nonviable.
\square ALGI.13.5: Determine if there is one solution, infinite solutions, or no solutions to a system of equations or inequalities.
\square Recall how to draw a number line.
\square Recognize the symbols for $=,>,<,<$ and $>$.
\square Substitute for the variable to find the value of a given expression.
\square Choose the correct value to replace each variable in the algebraic expression (Substitution).
\square Convert mathematical terms to mathematical symbols and numbers.
\square Recall how to order positive and negative numbers. (Use number line if needed).
$\square \quad$ Locate the position of integers and/or rational numbers on a horizontal or vertical number line.

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Functions shift the emphasis from a point bypoint relationship between two variables (input/output) to considering an entire set of ordered pairs (where each first element is paired with exactly one second element) as an entity with its own features and characteristics.
14. Given a relation defined by an equation in two variables, identify the graph of the relation as the set of all its solutions plotted in the coordinate plane. Note: The graph of a relation often forms a curve (which could be a line).

Learning Objectives	Prior Knowledge Skills

\square ALGI.14.1: Understand that the graph of an equation is the solution of an equation.
\square ALGI.14.2: Graph a linear equation and use the graph to determine the solution set.
$\square \quad$ ALGI.14.3: Use a given graph to determine the solution set.
$\square \quad$ ALGI.14.4: Plot given points from a table.

Prior Knowledge Skills

$\square \quad$ Identify the slope-intercept form ($y=m x+b$) of an equation where m is the slope and y is the y -intercept.
\square Graph a function given the slope-intercept form of an equation.
\square Demonstrate how to plot points on a coordinate plane using ordered pairs from table.
\square Recall how to plot ordered pairs on a coordinate plane.
\square Name the pairs of integers and/or rational numbers of a point on a coordinate plane.

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Functions shift the emphasis from a point bypoint relationship between two variables (input/output) to considering an entire set of ordered pairs (where each first element is paired with exactly one second element) as an entity with its own features and characteristics.
15. *Define a function as a mapping from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range.
a. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Note: If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x.
b. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. Limit to linear, quadratic, exponential, and absolute value functions.

Learning Objectives
 \square ALGI.15.1: Define domain, range, relation,

Prior Knowledge Skills function, table of values, input, and output.
\square ALGI.15.2: Understand the graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
\square ALGI.15.3: Understand that a function is a rule that assigns to each input exactly one output.
\square ALGI.15.4: Identify the equation of a function, given its graph.
\square ALGI.15.5: Find the range of a function given its domain.
\square ALGI.15.6: Recognize that $f(x)$ and y are the same.
\square ALGI.15.7: Recall how to complete input/output tables.
\square ALGI.15.8: Recall how to read/interpret information from a table.
\square Analyze the graph to determine the rate of change.
\square Generate the slope of a line using given ordered pairs.
\square Define linear functions, nonlinear functions, slope, and y intercept.
\square Identify ordered pairs.
\square Plot points on a coordinate plane., then connect points for the vertices to sketch a polygon.

| | ALGI.15.9: Define function notation. | |
| :--- | :--- | :--- | :--- |
| \square | ALGI.15.10: Translate a simple word | |
| | problem into function notation. | |
| \square | ALGI.15.11: Evaluate function when given $x-$ | |
| | value. | |

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Functions shift the emphasis from a point bypoint relationship between two variables (input/output) to considering an entire set of ordered pairs (where each first element is paired with exactly one second element) as an entity with its own features and characteristics.
16. Compare and contrast relations and functions represented by equations, graphs, or tables that show related values; determine whether a relation is a function. Explain that a function f is a special kind of relation defined by the equation $y=f(x)$.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square ALGI.16.1: Define functions, relations (ordered pairs), input, output.
\square ALGI.16.2: Recall how to complete input/output tables.
\square ALGI.16.3: Recall how to read/interpret information from a table.
\square ALGI.16.4: Identify algebraic expressions.
\square ALGI.16.5 Recall how to name points from a graph (ordered pairs).
\square ALGI.16.6: Recall how to name points on a Cartesian plane using ordered pairs.
\square Recall how to read a graph or table.
\square Define dependent variable, independent variable, ordered pairs, input, output, and coordinate plane.
\square Recall how to plot ordered pairs on a coordinate plane.
$\square \quad$ Name the pairs of integers and/or rational numbers of a point on a coordinate plane.

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Functions shift the emphasis from a point bypoint relationship between two variables (input/output) to considering an entire set of ordered pairs (where each first element is paired with exactly one second element) as an entity with its own features and characteristics.
17. Combine different types of standard functions to write, evaluate, and interpret functions in context. Limit to linear, quadratic, exponential, and absolute value functions.
a. Use arithmetic operations to combine different types of standard functions to write and evaluate functions.
Example: Given two functions, one representing flow rate of water and the other representing evaporation of that water, combine the two functions to determine the amount of water in a container at a given time.
b. Use function composition to combine different types of standard functions to write and evaluate functions.
Example: Given the following relationships, determine what the expression $S(T(t))$ represents.

Learning Objectives

Prior Knowledge Skills

\square Explain the distributive property.
\square Give examples of the properties of operations including distributive.
\square Combine like terms of a given expression.
\square Recognize the correct order to solve expressions with more than one operation.
\square Calculate a numerical expression (Ex. V=(4x4x4).
\square Choose the correct value to replace each variable in the algebraic expression (Substitution).
\square Calculate an expression in the correct order (Ex. exponents, mult./div. from left to right, and add/sub. from left to right).

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Graphs can be used to obtain exact or approximate solutions of equations, inequalities, and systems of equations and inequalities including systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).
18. Solve systems consisting of linear and/or quadratic equations in two variables graphically, using technology where appropriate.

Learning Objectives

\square ALGI.18.1: Use the substitution method to replace a variable in the quadratic equation.
$\square \quad$ ALGI.18.2: Solve for the variables in a system of equations. (Algebraically).
\square ALGI.18.3: Graph a quadratic equation.
\square ALGI.18.4: Graph a linear equation.
\square ALGI.18.5: Identify the point(s) of intersection when given graphs.
$\square \quad$ ALGI.18.6: Use digital tools to defend solutions to authentic problems.
\square ALGI.18.7: Use digital tools to formulate solutions to authentic problems (Ex: electronic graphing tools, probes, spreadsheets).

Prior Knowledge Skills

\square Given a function, create a rule.Recognize numeric patterns.Recall how to complete input/output tables.
\square Demonstrate how to plot points on a Cartesian plane using ordered pairs.
\square Define function, ordered pairs, input, and output.
\square Recall that linear equations can have one solution (intersecting), no solution (parallel lines), or infinitely many solutions (graph is simultaneous).
\square Graph a function given the slope-intercept form of an equation.
\square Identify the slope-intercept form ($\mathrm{y}=\mathrm{mx}+\mathrm{b}$) of an equation where m is the slope and y is the y-intercept.
\square Demonstrate how to plot points on a coordinate plane using ordered pairs from table.
\square Analyze the graph to determine the rate of change.
\square Generate the slope of a line using given ordered pairs.
\square Show how to plot points on a Cartesian plane.
\square Define ordered pairs.
\square Show how to graph on Cartesian plane.
\square Substitute for the variable to find the value of a given expression.
\square Recall how to plot ordered pairs on a coordinate plane.
\square Identify which signs indicate the location of a point in a coordinate plane.

		\square Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. $\square \quad$ Name the pairs of integers and/or rational numbers of a point on a coordinate plane. \square Define ordered pairs. \square Show on a number line that numbers that are equal distance from 0 and on opposite sides of 0 have opposite signs. \square Discover that the opposite of the opposite of a number is the number itself. \square Give examples of positive and negative numbers to represent quantities having opposite directions in real-world contexts. \square Identify the parts of a table of equivalent ratios (input, output, etc.).

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster	2019 Math COS Standard

Graphs can be used to obtain exact or approximate solutions of equations, inequalities, and systems of equations and inequalities including systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).
19. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$.
a. Find the approximate solutions of an equation graphically, using tables of values, or finding successive approximations, using technology where appropriate. Note: Include cases where $f(x)$ is a linear, quadratic, exponential, or absolute value function and $g(x)$ is constant or linear.

Learning Objectives	Prior Knowledge Skills	
$\square \quad$ ALGI.19.1: Define function, function	\square	Test the formula V= Iwh and V=Bh with the experimental
notation, linear, polynomial, rational,		findings.
absolute value, exponential, and	\square	Apply area formulas to solve real-world mathematical problems.
logarithmic functions, and transitive	\square	Define algebraic expression and variable.

\square ALGI.19.2: Explain, using the transitive property, why the x-coordinates of the points of the graphs are solutions to the equations.
\square ALGI.19.3: Find solutions to the equations y $=f(x)$ and $y=g(x)$ using the graphing calculator.
\square ALGI.19.4: Solve equations for y.
\square ALGI.19.5: Demonstrate use of a graphing calculator, including using a table, making a graph, and finding successive approximations.

Algebra and Functions

Focus 2: Connecting Algebra to Functions

Cluster
Graphs can be

used to obtain

exact or approximate solutions of equations, inequalities, and systems of equations and inequalities including systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).

2019 Math COS Standard

20. *Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes, using technology where appropriate.

Learning Objectives

$\square \quad$ ALGI.20.1: Define the half-plane as the shaded region.
\square ALGI.20.2: Determine the intersecting shaded region is the solution to the system.
\square ALGI.20.3: Graph the lines of the systems and shade the appropriate region.
$\square \quad$ ALGI.20.4: Determine the shaded region is the solution to the inequality.
\square ALGI.20.5: Graph an inequality and shade the appropriate region.
\square ALGI.20.6: Determine whether a line should be solid or dotted, depending on the inequality symbol.
\square ALGI.20.7: Recognize inequality symbols >, $<$.

Prior Knowledge Skills

\square Define function, ordered pairs, input, output.
\square Identify the slope-intercept form ($\mathrm{y}=\mathrm{mx}+\mathrm{b}$) of an equation where m is the slope and y is the y-intercept.
\square Demonstrate how to plot points on a coordinate plane using ordered pairs from table.
\square Generate the slope of a line using given ordered pairs.
\square Recall how to graph inequalities on a number line.
\square Show how to graph on Cartesian plane.
\square Show how to plot points on a Cartesian plane.
\square Define ordered pairs.
\square Graph the solution set on a number line for the inequality used to represent the situation.
\square Recall how to plot ordered pairs on a coordinate plane.
\square Identify which signs indicate the location of a point in a coordinate plane.
\square Demonstrate when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
$\square \quad$ Name the pairs of integers and/or rational numbers of a point on a coordinate plane.
\square Define ordered pairs.

Algebra and Functions

Focus 3: Functions

Cluster	2019 Math COS Standard	
Functions can be described by using a variety of representations: mapping diagrams, function notation (e.g., $f(x)=x^{2}$), recursive definitions, tables, and graphs.	21. *Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Extend from linear to quadratic, exponential, absolute value, and general piecewise.	
	Learning Objectives	Prior Knowledge Skills
	ALGI.21.1: Define function, function notation, (linear, polynomial, rational, absolute value, exponential, piecewise, and logarithmic) functions, and transitive property. ALGI.21.2: Explain, using the transitive property, why the x-coordinates of the points of the graphs are solutions to the equations. ALGI.21.3: Find solutions to the equations y $=f(x)$ and $y=g(x)$ using the graphing calculator. ALGI.21.4: Solve equations for y. ALGI.21.5: Demonstrate use of a graphing calculator, including using a table, making a graph, and finding successive approximations.	\square Identify the slope-intercept form ($\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{b}$) of an equation where m is the slope and y is the y-intercept. Graph a function given the slope-intercept form of an equation. Demonstrate how to plot points on a coordinate plane using ordered pairs from a table. Calculate a solution or solution set by combining like terms, isolating the variable, and/or using inverse operations. \square Recall how to plot ordered pairs on a coordinate plane. \square Name the pairs of integers and/or rational numbers of a point on a coordinate plane.

Algebra and Functions

Focus 3: Functions

Cluster	2019 Math COS Standard

Functions can be described by using a variety of representations: mapping diagrams, function notation (e.g., $f(x)=x^{2}$), recursive definitions, tables, and graphs.
22. Define sequences as functions, including recursive definitions, whose domain is a subset of the integers.
a. Write explicit and recursive formulas for arithmetic and geometric sequences and connect them to linear and exponential functions.
Example: A sequence with constant growth will be a linear function, while a sequence with proportional growth will be an exponential function.

Learning Objectives	Prior Knowledge Skills

\square ALGI.22.1: Define proportions and proportional relationships.
\square ALGI.22.2: Write equations to represent a proportional relationship.
\square ALGI.22.3: Discuss the use of variables in proportional relationships.
\square ALGI.22.4: Define sequences and recursively defined sequences.
\square ALGI.22.5: Recognize that sequences are functions whose domain is the set of all positive integers and zero.

Algebra and Functions

Focus 3: Functions

Cluster	2019 Math COS Standard

Functions that are members of the same family have distinguishing attributes (structure) common to all functions within that family.
23. *Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k \cdot f(x), f(k \cdot x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and explain the effects on the graph, using technology as appropriate. Limit to linear, quadratic, exponential, absolute value, and linear piecewise functions.

Learning Objectives	Prior Knowledge Skills	
\square ALGI.23.1: Define dilation, rotation,	\square Identify congruent figures.	
\quad reflection, translation, congruent and	\square Compare rotations to translations.	
sequence.	\square Compare reflections to rotations.	
\square ALGI.23.2: Identify rotations.	\square Compare translations to reflections.	
\square ALGI.23.3: Identify reflections.	\square Recognize translations (slides), rotations (turns), and reflections	
\square ALGI.23.4: Identify translations.	(flips).	

Algebra and Functions

Focus 3: Functions

Cluster

Functions that are members of the same family have distinguishing attributes (structure) common to all functions within that family.

2019 Math COS Standard

24. Distinguish between situations that can be modeled with linear functions and those that can be modeled with exponential functions.
a. Show that linear functions grow by equal differences over equal intervals, while exponential functions grow by equal factors over equal intervals.
b. Define linear functions to represent situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Define exponential functions to represent situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Learning Objectives	Prior Knowledge Skills
ALGI.24.1: Define linear function and exponential function. ALGI.24.2: Distinguish between graphs of a line and an exponential function. ALGI.24.3: Identify the graph of an exponential function. ALGI.24.4: Identify the graph of a line. ALGI.24.5: Plot points on a coordinate plane from a given table of values. ALGI.24.6a: Divide each y-value in a table of values by its successive y-value to determine if the quotients are the same, to prove an exponential function. ALGI.24.7a: Subtract each y-value in a table of values by its successive y-value to determine if the differences are the same, to prove a linear function. ALGI.24.8a: Apply rules for adding, subtracting, multiplying, and dividing integers.	Recognize ordered pairs. Identify ordered pairs. Recognize linear equations. Recall how to solve problems using the distributive property. Define linear and nonlinear functions, slope, and y intercept. Analyze the graph to determine the rate of change.

	\square \square \square \square \square \square \square \square	ALGI.24.9b: Define constant rate of change as slope. ALGI.24.10b: Subtract each y-value in a table of values by its successive y-value to determine if the differences are the same, to prove a linear function. ALGI.24.11b: Recognize the calculated difference is the constant rate of change. ALGI.24.12b: Apply rules for adding, subtracting, multiplying, and dividing integers. ALGI.24.13c: Define exponential growth and decay. ALGI.24.14c: Divide each y-value in a table of values by its successive y-value to determine if the quotients are the same, to prove an exponential function. ALGI.24.15c: Apply the rules of multiplication and division of integers.

Algebra and Functions

Focus 3: Functions

Cluster

Functions that are members of the same family have distinguishing attributes (structure) common to all functions within that family.

2019 Math COS Standard

25. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Learning Objectives

ALGI.25.1: Define linear function and exponential function.
\square ALGI.25.2: Define arithmetic sequence, geometric sequence, and input-output pairs.
$\square \quad$ ALGI.25.3: Define sequences and recursively defined sequences.
\square ALGI.25.4: Recognize that sequences are functions whose domain is the set of all positive integers and zero.
\square ALGI.25.5: Given a chart, write an equation of a line.
$\square \quad$ ALGI.25.6: Given a graph, write an equation of a line.
$\square \quad$ ALGI.25.7: Given two ordered pairs, write an equation of a line.

Prior Knowledge Skills

\square Given a function, create a rule.
\square Recognize numeric patterns.
\square Recall how to complete input/output tables.
\square Demonstrate how to plot points on a Cartesian plane using ordered pairs.
\square Define function, ordered pairs, input, output.
\square Graph a linear equation given the slope-intercept form of an equation.
\square Graph a function given the slope-intercept form of an equation.
\square Identify the slope-intercept form ($\mathrm{y}=\mathrm{mx}+\mathrm{b}$) of an equation where m is the slope and y is the y-intercept.
\square Generate the slope of a line using given ordered pairs.
\square Recall the rules for multiplying integers.
\square Define quotient, divisor, and integer.
\square Solve addition and subtraction of multi-digit whole numbers.
\square Solve addition and subtraction of multi-digit decimal numbers (emphasis on alignment).
\square Recall basic multiplication and division facts.
\square Solve multiplication problems involving multi-digit whole numbers and decimal numbers.
\square Solve division problems involving multi-digit whole numbers and decimal numbers.

Algebra and Functions

Focus 3: Functions

Cluster	2019 Math COS Standard

Functions that are members of the same family have distinguishing attributes (structure) common to all functions within that family.
26. Use graphs and tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.

Learning Objectives	Prior Knowledge Skills

\square ALGI.26.1: Define a polynomial function and parabola.
\square ALGI.26.4: Compare the y-values by looking at the same x-value in a variety of tables or graphs.
$\square \quad$ ALGI.26.3: Identify the graph of an exponential function.
\square ALGI.26.4: Identify the graph of a line.
\square ALGI.26.5: Plot points on a coordinate plane from a given table of values.
\square ALGI.26.6: Identify the graph of a quadratic function.
$\square \quad$ Create a graph to model a real-word situation.
$\square \quad$ Compare and contrast the relationship between two quantities in a graph.
\square Compare and contrast the differences between linear and nonlinear functions.

Algebra and Functions

Focus 3: Functions

Cluster	2019 Math COS Standard	
Functions that are members of the same family have distinguishing	27. Interpret the parameters of functions in terms of a context. Extend from linear functions, written in the form $\mathrm{mx}+\mathrm{b}$, to exponential functions, written in the form $\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{x}}$. Example: If the function $V(t)=19885(0.75)^{t}$ describes the value of a car after it has been owned for t years, 19885 represents the purchase price of the car when $t=0$, and 0.75 represents the annual rate at which its value decreases.	
	Learning Objectives	Prior Knowledge Skills
(structure) common to all functions within that family.	ALGI.27.1: Recall the formula of an exponential function. \square ALGI.27.2: Recall the slope-intercept form of a linear function. \square ALGI.27.3: Define b as growth or decay factor in the context of an exponential problem. \square ALGI.27.4: Define k as the initial amount in the context of an exponential problem. \square ALGI.27.5: Define m as the rate of change in the context of a linear problem. \square ALGI.27.6: Define b as the initial amount in the context of a linear problem.	\square Solve problems with exponents. Discuss strategies for solving real-world and mathematical problems. Recognize ordered pairs. Identify parts of the Cartesian plane. Recall how to plot points on a Cartesian plane. Distinguish the difference between linear and nonlinear functions. Define qualitative, increase, and decrease. Recall how to name points from a graph (ordered pairs). Recall how to find the rate of change (slope) in a linear equation. Recall how to complete an input/output function table. Analyze real-world situations to identify the rate of change and initial value from a table, graph, or description. Define function, rate of change, and initial value.

Algebra and Functions

Focus 3: Functions

Cluster

Functions can be represented graphically and key features of the graphs, including zeros, intercepts, and, when relevant, rate of change and maximum/minimum values, can be associated with and interpreted in terms of the equivalent symbolic representation.

2019 Math COS Standard

28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.

Learning Objectives	Prior Knowledge Skills
ALGI.28.1: Define intercepts, intervals, relative maxima, relative minima, symmetry, end behavior, and periodicity. \square ALGI.28.2: For a function that models a relationship between two quantities, find the periodicity. ALGI.28.3: For a function that models a	Identify parts of the Cartesian plane. Graph a function given the slope-intercept form of an equation. Demonstrate how to plot points on a coordinate plane using ordered pairs from table. Recall how to plot ordered pairs on a coordinate plane. Name the pairs of integers and/or rational numbers of a point on a coordinate plane.

\square ALGI.28.4: For a function that models a relationship between two quantities, find the symmetry.
$\square \quad$ ALGI.28.5: For a function that models a relationship between two quantities, find the intervals where the function is increasing, decreasing, positive, or negative.
$\square \quad$ ALGI.28.6: For a function that models a relationship between two quantities, find the relative maxima and minima.

Prior Knowledge Skills

\square Identify parts of the Cartesian plane.
Grapha function given the slope intereept form of an equation. der

Recall how to plot ordered pairs on a coordinate plane.
$\square \quad$ Name the pairs of integers and/or rational numbers of a point on a coordinate plane.

| \square | ALGI.28.7: For a function that models a
 relationship between two quantities, find
 the xand y intercepts. | |
| :--- | :--- | :--- | :--- |

Algebra and Functions

Focus 3: Functions

Cluster
Functions can be

2019 Math COS Standard

29. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Limit to linear, quadratic, exponential, and absolute value functions.

\section*{| Learning Objectives | Prior Knowledge Skills |
| :--- | :--- |}

\square ALGI.29.1: Identify equivalent ratios.
\square ALGI.29.2: Define average rate of change as slope.
\square ALGI.29.3: Estimate the rate of change from a graph (rise/run).
$\square \quad$ ALGI.29.4: Interpret the average rate of change.
$\square \quad$ ALGI.29.5: Calculate the average rate of change.
\square ALGI.29.6: Compute the slope of a line given two ordered pairs.
\square ALGI.29.7: Identify the slope, given slope-intercept form.
\square Apply the identification of the slope and the y-intercept to a real-world situation.
\square Recall how to write an equation in slope-intercept form.
\square Recall how to solve equations by using substitution.
\square Identify how many solutions the linear equation may or may not have.
\square Calculate an expression in the correct order (Ex. exponents, mult./div. from left to right, and add/sub. from left to right).
\square Define ratio, rate, proportion, percent, equivalent, input, output, ordered pairs, diagram, unit rate, and table.

Algebra and Functions

Focus 3: Functions

Cluster

Functions can be represented graphically and key features of the graphs, including zeros, intercepts, and, when relevant, rate of change and maximum/minimum values, can be associated with and interpreted in terms of the equivalent symbolic representation.

2019 Math COS Standard

30. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph piecewise-defined functions, including step functions and absolute value functions.
c. Graph exponential functions, showing intercepts and end behavior.

\square ALGI.30.5a: Graph quadratic functions showing intercepts.
\square ALGI.30.6a: Graph linear functions showing intercepts.
$\square \quad$ ALGI.30.7b: Define square root, cube root, and absolute value function.
$\square \quad$ ALGI.30.8b: Graph piecewise-defined functions.
\square ALGI.30.9b: Graph step functions.ALGI.30.10b: Graph cube root functions.
\square ALGI.30.11b: Graph square root functions.

| | \squareALGI.30.12b: Graph absolute value
 functions. |
| :--- | :--- | :--- |
| \squareALGI.30.13c Identify exponential numbers
 as repeated multiplication.
 \squareALGI.30.14c Rewrite exponential numbers
 as repeated multiplication. \quad. | |

Algebra and Functions

Focus 3: Functions

Cluster	2019 Math COS Standard

| Functions model |
| :--- | :---: |
| a wide variety of | | 31. Use the mathematical modeling cycle to solve real-world problems involving linear, quadratic, |
| :---: |
| exponential, absolute value, and linear piecewise functions. | real situations and can help students understand the processes of making and changing assumptions, assigning variables, and finding solutions to contextual problems.

Prior Knowledge Skills

Note: One does not need to move through the modeling cycle in the same order, aspects of the cycle may be repeated.

The Mathematical Modeling Cycle:
\square Define the problem.
\square Make assumptions/Define variables.
\square Do the math/Get solutions.
\square Assess the model and solutions.
$\square \quad$ Iterate to refine and extend model.
\square Implement and report results.

Data Analysis, Statistics, and Probability

Focus 1: Quantitative Literacy

Cluster
Mathematical and

2019 Math COS Standard

Mathematical and statistical reasoning about data can be used to evaluate conclusions and assess risks.
32. *Use mathematical and statistical reasoning with bivariate categorical data in order to draw conclusions and assess risk.
Example: In a clinical trial comparing the effectiveness of flu shots A and $B, 21$ subjects in treatment group A avoided getting the flu while 29 contracted it. In group B, 12 avoided the flu while 13 contracted it. Discuss which flu shot appears to be more effective in reducing the chances of contracting the flu. Possible answer: Even though more people in group A avoided the flu than in group B, the proportion of people avoiding the flu in group B is greater than the proportion in group A, which suggests that treatment B may be more effective in lowering the risk of getting the flu.

Learning Objectives

Prior Knowledge Skills

\square ALGI.32.1: Define proportional relationships, unit rate, and slope.
\square ALGI.32.2: Define probability of chance, outcomes and events.
\square ALGI.32.3: Define bivariate scatter plot, outlier, cluster, linear, nonlinear, and positive and negative association.
\square ALGI.32.4: Define relative frequency, bivariate, and frequency.
$\square \quad$ ALGI.32.5: Calculate frequency as it pertains to the data for a two-way table.
\square Analyze scatter plots to determine line of best fit.
\square Define scatter plot, outlier, linear, quantitative, line of best fit, and variable.

Data Analysis, Statistics, and Probability

Focus 1: Quantitative Literacy

Cluster	2019 Math COS Standard

Making and defending informed, databased decisions is a characteristic of a quantitatively literate person.
33. Design and carry out an investigation to determine whether there appears to be an association between two categorical variables, and write a persuasive argument based on the results of the investigation.
Example: Investigate whether there appears to be an association between successfully completing a task in a given length of time and listening to music while attempting the task. Randomly assign some students to listen to music while attempting to complete the task and others to complete the task without listening to music. Discuss whether students should listen to music while studying, based on that analysis.

Learning Objectives	Prior Knowledge Skills

\square ALGI.33.1: Write arguments to support claims with clear reasons and relevant evidence.
\square ALGI.33.2: Write a persuasive argument to justify the solution.
\square ALGI.33.3: Introduce claim(s) and organize the reasons and evidence clearly.
\square AGLI.33.4: Support claim(s) with clear reasons and relevant evidence, using credible sources and demonstrating an understanding of the topic or text.
\square ALGI.33.5: Summarize numerical data sets in relation to their context.
\square ALGI.33.6: Infer information from data distributions.
\square Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute.
$\square \quad$ Analyze a two-way table containing categorical variables.
$\square \quad$ Design a two-way table.
$\square \quad$ Define relative frequency and frequency.

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

Data arise from a context and come in two types: quantitative (continuous or discrete) and categorical. Technology can be used to "clean" and organize data, including very large data sets, into a useful and manageable structure a first step in any analysis of data.
34. Distinguish between quantitative and categorical data and between the techniques that may be used for analyzing data of these two types.
Example: The color of cars is categorical and so is summarized by frequency and proportion for each color category, while the mileage on each car's odometer is quantitative and can be summarized by the mean.

Learning Objectives	Prior Knowledge Skills

\square ALGI.34.1: Define categorical and quantitative data.
\square ALGI.34.2: Calculate frequency as it pertains to the data for a two-way table, graph or given context within the problem.
\square ALGI.34.3: Investigate to determine whether there is an association between two categorical variables.
\square Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute.
\square Analyze a two-way table containing categorical variables.
\square Design a two-way table.
\square Define relative frequency and frequency

Data Analysis, Statistics, and Probability

Focus 2: Visualizing and Summarizing Data

Cluster	2019 Math COS Standard

The association between two categorical variables is typically represented by using two-way tables and segmented bar graphs.

2019 Math COS Standard
35. *Analyze the possible association between two categorical variables.
a. Summarize categorical data for two categories in two-way frequency tables and represent using segmented bar graphs.
b. Interpret relative frequencies in the context of categorical data (including joint, marginal, and conditional relative frequencies).
c. Identify possible associations and trends in categorical data.

Learning Objectives	Prior Knowledge Skills

\square ALGI.35.1: Define categorical data, two-way frequency table, relative frequency, joint frequency, marginal frequency, and conditional relative frequency.
\square ALGI.35.2: Recognize possible associations and trends in the data.
\square ALGI.35.3: Interpret conditional relative frequencies in the context of the data.
\square ALGI.35.4: Interpret marginal frequencies in the context of the data.
ALGI.35.5: Analyze data from tables.

Data Analysis, Statistics, and Probability		
Focus 2: Visualizing and Summarizing Data		
Cluster	2019 Math COS Standard	
Data analysis techniques can be used to develop models of contextual situations and to generate and evaluate possible solutions to real	36. *Generate a two-way categorical table in order to find and evaluate solutions to real-world problems. a. Aggregate data from several groups to find an overall association between two categorical variables. b. Recognize and explore situations where the association between two categorical variables is reversed when a third variable is considered (Simpson's Paradox). Example: In a certain city, Hospital 1 has a higher fatality rate than Hospital 2. But when considering mildly-injured patients and severely-injured patients as separate groups, Hospital 1 has a lower fatality rate among both groups than Hospital 2, since Hospital 1 is a Level 1 Trauma Center. Thus, Hospital 1 receives most of the severely injured patients who are less likely to survive overall but have a better chance of surviving in Hospital 1 than they would in Hospital 2.	
problems	Learning Objectives	Prior Knowledge Skills
involving those contexts.	ALGI.36.1: Define categorical and quantitative data. ALGI.36.2: Calculate frequency as it pertains to the data for a two-way table, graph or given context within the problem. ALGI.36.3: Put the data into a two-way categorical table and analyze the data for relationships. \square ALGI.36.4: Investigate to determine whether there is an association between two categorical variables. \square ALGI.36.5: Recognize possible associations and trends in the data. \square ALGI.36.6: Summarize categorical data for two categories in two-way frequency tables. \square ALGI.36.7: Analyze data from tables.	Identify different types of data. Organize data in an ordered list. Compare and contrast data using their measures of central tendency. Read and interpret tables.

Data Analysis, Statistics, and Probability

Focus 3: Statistical Inference (Note: There are no Algebra I with Probability standards in Focus 3)

Focus 4: Probability

\section*{| Cluster |
| :--- |
| Two events are |} independent if the occurrence of one event does not affect the probability of the other event. Determining whether two events are independent can be used for finding and understanding probabilities.

2019 Math COS Standard

37. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").

Learning Objectives

Prior Knowledge Skills
\square ALGI.37.1: Define sample, validity, population, inference, random sampling, statistic, and generalization.
\square ALGI.37.2: Identify the nature of the attribute, how it was measured, and its unit of measure.
\square ALGI.37.3: Discuss real world examples of valid sampling and generalizations.
\square ALGI.37.4: Compare sample size with population to check for validity.
\square ALGI.37.5: Analyze attributes of sample size.
\square ALGI.37.6: Differentiate between appropriate sampling methods.
\square ALGI.37.7: Explain the validity of random sampling.
\square ALGI.37.8: Given a contextual situation, interpret and defend the solution in the context of the original problem.
\square Collect data from population randomly, choosing same size samples. (Ex. If population is your school, different random samplings should be same number of students)
\square Recall the nature of the attribute, how it was measured, and its unit of measure.
\square Discuss real world examples of valid sampling and generalizations.
\square Compare and contrast the random sampling data to the population.
\square Analyze attributes of sample size.
\square Differentiate the appropriate sampling method.
\square Explain the validity of random sampling.

Data Analysis, Statistics, and Probability

Focus 3: Statistical Inference (Note: There are no Algebra I with Probability standards in Focus 3)
Focus 4: Probability

Cluster

Two events are independent if the occurrence of one event does not affect the probability of the other event. Determining whether two events are independent can be used for finding and understanding probabilities.

2019 Math COS Standard

38. *Explain whether two events, A and B, are independent, using two-way tables or tree diagrams.

Learning Objectives	Prior Knowledge Skills

\square ALGI.38.1: Define probability, ratio, simple event, compound event, and independent event.
$\square \quad$ ALGI.38.2: Determine the probability of a compound event.
\square ALGI.38.3: Determine the probability of an independent event.
\square ALGI.38.4: Determine the probability of a simple event by expressing the probability as a ratio, percent, or decimal.
\square ALGI.38.5: Identify the probability of an event that is certain as 1 or impossible as 0 .
\square ALGI.38.6: Solve word problems involving probability.
\square ALGI.38.7: Use proportional relationships to solve multi-step ratio and percent problems.
$\square \quad$ ALGI.38.8: Recognize and represent proportional relationships as ratios between two quantities.
\square Demonstrate how to write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.
\square Using the model, count the frequency of the actual outcome.
\square List all actual outcomes using a graphic representation (probability model-tree diagram, organized list, table, etc.).
\square Define probability of observed frequency, outcome, discrepancy, and event.

Data Analysis, Statistics, and Probability

Focus 3: Statistical Inference (Note: There are no Algebra I with Probability standards in Focus 3)
Focus 4: Probability

Cluster	2019 Math COS Standard

Conditional probabilities that is, those probabilities that are "conditioned" by some known information - can be computed from data organized in contingency tables. Conditions or assumptions may affect the computation of a probability.

2019 Math COS Standard
39. Compute the conditional probability of event A given event B, using two-way tables or tree diagrams.

Learning Objectives	Prior Knowledge Skills
\square ALGI.39.1: Define likelihood, probability,	\square Calculate the probability of a single event.
and event.	\square Calculate the number of outcomes by listing all possible outcomes.

\square ALGI.39.2: Construct a graphic representation of all outcomes (probability model-tree diagram, organized list, table, etc.).
\square ALGI.39.3: Compare and contrast probability of chance and probability of observed frequency.
\square ALGI.39.4: Write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.

Data Analysis, Statistics, and Probability

Focus 3: Statistical Inference (Note: There are no Algebra I with Probability standards in Focus 3)
Focus 4: Probability

Cluster

Conditional probabilities that is, those probabilities that are "conditioned" by some known information - can be computed from data organized in contingency tables. Conditions or assumptions may affect the computation of a probability.

2019 Math COS Standard

40. *Recognize and describe the concepts of conditional probability and independence in everyday situations and explain them using everyday language.
Example: Contrast the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Learning Objectives
\square ALGI.40.1: Define probability using everyday language.
\square ALGI.40.2: Compare and contrast probability of chance and probability of observed frequency.
\square ALGI.40.3: Explain the difference between possible outcomes and likely outcomes.
\square ALGI.40.4: Cite evidence to support analysis of what the data says explicitly as well as inferences drawn from the data.

Prior Knowledge Skills

\square Demonstrate how to write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.
\square Display all outcomes in a graphic representation (probability modeltree diagram, organized list, table, etc.).
\square Compare and contrast probability of chance and probability of observed frequency.
\square Define probability of chance, probability of events, outcome, and probability of observed frequency.

Data Analysis, Statistics, and Probability

Focus 3: Statistical Inference (Note: There are no Algebra I with Probability standards in Focus 3)

Focus 4: Probability

Cluster

Conditional probabilities that is, those probabilities that are "conditioned" by some known information - can be computed from data organized in contingency tables. Conditions or assumptions may affect the computation of a probability.

2019 Math COS Standard

41. Explain why the conditional probability of A given B is the fraction of B 's outcomes that also belong to A and interpret the answer in context.
Example: the probability of drawing a king from a deck of cards, given that it is a face card, is $\frac{4 / 52}{12 / 52}$ which is $\frac{1}{3}$.

Learning Objectives
\square ALGI.41.1: Define likelihood, probability, and event.
\square ALGI.41.2: Construct a graphic representation of all outcomes (probability model-tree diagram, organized list, table, etc.).
\square ALGI.41.3: Compare and contrast probability of chance and probability of observed frequency.
\square ALGI.41.4: Write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.
\square ALGI.41.5: Explain the difference between possible outcomes and likely outcomes.
\square ALGI.41.6: Cite evidence to support analysis of what the data says explicitly as well as inferences drawn from the data.

Prior Knowledge Skills

\square Demonstrate how to write the probability as a fraction, with likely outcomes as the numerator and possible outcomes as the denominator.
\square Display all outcomes in a graphic representation (probability modeltree diagram, organized list, table, etc.).
\square Compare and contrast probability of chance and probability of observed frequency.
\square Define probability of chance, probability of events, outcome, and probability of observed frequency.

Algebra 2 With Statistics

三

Algebra 2 with Statistics

Number and Quantity

Cluster	2
Together,	
irrational numbers	
and rational	
numbers complete	

2019 Math COS Standard
Together, and rational numbers complete

1. *Identify numbers written in the form $\mathrm{a}+\mathrm{bi}$, where a and b are real numbers and $i^{2}=-1$ as complex numbers.
a. Add, subtract, and multiply complex numbers using the commutative, associative, and distributive properties. the real number system, representing all points on the number line, while there exist numbers beyond the real numbers called complex numbers.

| Learning Objectives |
| :--- | :--- |
| \square ALGII 1.1: Define real and complex numbers, |

\square ALGII.1.1: Define real and complex numbers, commutative, associative, and distributive properties.
\square ALGII.1.2: Apply commutative, associative, and distributive properties to using multiplication with complex numbers.
\square ALGII.1.3: Apply commutative, associative, and distributive properties to using addition and subtraction with complex numbers.
$\square \quad$ ALGII.1.4: Use commutative, associative, and distributive properties.
ALGII.1.5: Identify imaginary numbers.

Prior Knowledge Skills
\square Review laws of integers.
$\square \quad$ Apply commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
$\square \quad$ Review commutative, associative, and distributive properties.
$\square \quad$ Recall solving one step equations and inequalities.
\square Calculate a solution or solution set by combining like terms, isolating the variable, and/or using inverse operations.

Number and Quantity		
Cluster	2019 Math COS Standard	
Matrices are a useful way to represent information.	2. Use matrices to represent and manipulate data.	
	Learning Objectives	Prior Knowledge Skills
	\square ALGII.2.1: Define matrix. \square ALGII.2.2: Organize data into a matrix using rows and columns.	Identify a row. Identify a column. Add complex numbers. Subtract complex numbers.

Number and Quantity		
Cluster	2019 Math COS Standard	
Matrices are a useful way to represent information.	3. Multiply matrices by scalars to produce new matrices.	
	Learning Objectives	Prior Knowledge Skills
	ALGII.3.1: Define scalar. \square ALGII.3.2: Multiply a matrix by a scalar.	Basic multiplication facts. Identify a matrix. \square Multiply each element by a given scalar

Number and Quantity		
Cluster	2019 Math COS Standard	
Matrices are a useful way to represent information.	4. *Add, subtract, and multiply matrices of appropriate dimensions.	
	Learning Objectives	Prior Knowledge Skills
	ALGII.4.1: Multiply matrices of appropriate dimensions. \square ALGII.4.2: Subtract matrices of appropriate dimensions. \square ALGII.4.3: Add matrices of appropriate dimensions.	Recognize rows. Recognize columns. \square Recognize the distributive property.

Number and Quantity		
Cluster	2019 Math COS Standard	
Matrices are a useful way to represent information.	5. Describe the roles that zero and identity matrices play in matrix addition and multiplication, recognizing that they are similar to the roles of 0 and 1 in the real numbers. a. Find the additive and multiplicative inverses of square matrices, using technology as appropriate. b. Explain the role of the determinant in determining if a square matrix has a multiplicative inverse.	
	Learning Objectives	Prior Knowledge Skills
	\square ALGII.5.1: Define zero matrix and identity matrix. \square ALGII.5.2: Multiply an identity matrix by any other matrix will result in the other matrix. \square ALGII.5.3: Know that identity matrices have a diagonal of 1's, starting at the top left-hand corner and going down. All other entries are zeroes. \square ALGII.5.4: Recognize that when the zero matrix is added to any other matrix, the sum is the other matrix.	\square Cross multiply. \square Basic subtraction.

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions can be rewritten in	6. *Factor polynomials using common factoring techniques and use the factored form of a polynomial to reveal the zeros of the function it defines.	
equivalent forms	Learning Objectives	Prior Knowledge Skills
by using algebraic properties, including properties of addition, multiplication, and exponentiation, to make different characteristics or features visible.	\square ALGII.6.1: Define factor, monomial, binominal, trinomial, polynomial, quadratic expression and zero product property. \square ALGII.6.2: Factor a quadratic expression (Greatest Common Factor, completing the square, difference of two squares, perfect square trinomials, and quadratic formula). \square ALGII.6.3: Use the zero-product property to reveal the zeros in the function. \square ALGII.6.4: Solve a two-step equation. \square ALGII.6.5: Solve a one-step equation. \square ALGII 6.6: Determine the Greatest Common Factor (GCF).	Combine like terms of a given expression. Define monomial, term, binomial, trinomial and polynomial. Multiply polynomial expressions (quadratic). Multiply polynomial expressions (linear). Subtract polynomial expressions. Add polynomial expressions. Use order of operations to evaluate and simplify algebraic and numerical expressions. Identify the terms in a polynomial expression. Explain the distributive property. Factor simple trinomials where $\mathrm{a}=1$. Find the zeros of a simple binomial. Use a graphing calculator to find the zeros of simple polynomials.

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions can	7. Prove polynomial identities and use them to describe numerical relationships.	
be rewritten in	Learning Objectives	Prior Knowledge Skills
equivalent forms by using algebraic properties, including properties of addition, multiplication, and exponentiation, to make different characteristics or features visible.	ALGII.7.1: Define polynomial identities. ALGII.7.2: Identify the polynomial identities used to manipulate numerical relationships.	\square Define integers. \square Demonstrate the location of positive and negative numbers on a vertical and horizontal number line. \square Give examples of positive and negative numbers. \square Discuss the measure of centering of 0 in relationship to positive and negative numbers.

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Finding solutions to an equation,	8. Explain why extraneous solutions to an equation may arise and how to check to be sure that a candidate solution satisfies an equation. Extend to radical equations.	
inequality, or	Learning Objectives	Prior Knowledge Skills
system of equations or inequalities requires the checking of candidate solutions, whether generated analytically or graphically, to ensure that solutions are found and that those found are not extraneous. The structure of an equation or inequality	\square ALGII.8.1: Define rational, irrational, and radical expressions and extraneous solutions. \square ALGII.8.2: Simplify rational and radical equations. \square ALGII.8.3: Apply properties of exponents. \square ALGII.8.4: Evaluate solutions by substituting into the original equation.	Define rational numbers. Define irrational numbers. Define radical numbers. Identify perfect squares. Identify symbols for square roots.

```
(including, but
not limited to,
one-variable
linear and
quadratic
equations,
inequalities, and
systems of linear
equations in two
variables) can be
purposefully
analyzed (with
and without
technology) to
determine an
efficient strategy
to find a solution,
if one exists, and
then to justify the
solution.
```



```
(including, but
not limited to,
one-variable
linear and
quadratic
equations,
inequalities, and
systems of linear
equations in two
variables) can be
purposefully
analyzed (with
and without
technology) to
determine an
efficient strategy
to find a solution,
if one exists, and
then to justify the
solution.
```

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions, equations, and inequalities can be	10.Create equations and inequalities in one variable and use them to solve problems. Extend to equations arising from polynomial, trigonometric (sine and cosine), logarithmic, radical, and general piecewise functions.	
used to analyze	Learning Objectives	Prior Knowledge Skills
and make predictions, both within mathematics and as mathematics is applied in different contexts-in particular, contexts that arise in relation to linear, quadratic, and exponential situations.	\square ALGII.10.1: Define equation, expression, variable, equality, and inequality. \square ALGII.10.2: Create inequalities with one variable. \square ALGII.10.3: Create equations with one variable. \square ALGII.10.4: Solve two-step equations and inequalities. \square ALGII.10.5: Solve one-step equations and inequalities. \square ALGII.10.6: Compare and contrast equations and inequalities. \square ALGII.10.7: Recognize inequality symbols including, $£$, and ${ }^{3}$.	\square Recognize inequality symbols including greater than, less than, greater than equal to, and less than equal to. \square Demonstrate the location of positive and negative numbers on a horizontal number line. \square Substitute for the variable to find the value of a given expression.

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions,	11.*Solve quadratic equations with real coefficients that have complex solutions.	
equations, and	Learning Objectives	Prior Knowledge Skills
inequalities can be used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts-in particular, contexts that arise in relation to linear, quadratic, and exponential situations.	ALGII.11.1: Solve quadratic equations with real coefficients that have simple solutions. ALGII.11.2: Review quadratic formula, completing the square, and factoring. \square ALGII.11.3: Review the zero-product property.	\square Understand that all quadratic equations have two solutions: real or imaginary. \square Apply quadratic equations to contextual situations. \square Solutions to a quadratic equation must make the original equation true and this should be verified. $\square \quad$ When the quadratic equation is derived from a contextual situation, proposed solutions to the quadratic equation should be verified within the context given, as well as mathematically. \square Different procedures for solving quadratic equations are necessary under different conditions. If $a b=0$, then at least one of a or b must be zero ($a=0$ or $b=0$) and this is then used to produce the two solutions to the quadratic equation. -Whether the roots of a quadratic equation are real or complex is determined by the coefficients of the quadratic equation in standard form ($a \times 2+b x+c=0$).

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions, equations, and	12. Solve simple equations involving exponential, radical, logarithmic, and trigonometric functions using inverse functions.	
inequalities can	Learning Objectives	Prior Knowledge Skills
be used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts-in particular, contexts that arise in relation to linear, quadratic, and exponential situations.	\square ALGII.12.1: Define function, function notation, linear, polynomial, rational, radical, absolute value, exponential, and logarithmic functions, and transitive property. \square ALGII.12.2: Solve an equation of the form $f(x)$ $=\mathrm{c}$ for a simple linear function f that has an inverse. \square ALGII.12.3: Write an expression for the inverse of a simple linear function f of the form $f(x)=c$. \square ALGII.12.4: Apply the properties of multiplicative inverses. \square ALGII.12.5: Apply the properties of exponentials. \square ALGII.12.6: Apply the substitution principle. \square ALGII.12.7: Solve a multi-step equation.	Evaluate a function for an output given the input. Recall absolute value, radicals, exponents, and linear functions. Recall how to substitute a value for a variable. Solve an equation for a missing value.

Algebra and Functions		
Focus 1: Algebra		
Cluster	2019 Math COS Standard	
Expressions, equations, and inequalities can be used to	13. *Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales and use them to make predictions. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.	
analyze and make	Learning Objectives \square ALGII.13.1: Define ordered pair, coordinate plane, polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions. ALGII.13.2: Create equations with two variables (polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions). \square ALGII.13.3: Graph equations on coordinate axes with labels and scales (polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.). \square ALGII.13.4: Identify an ordered pair and plot it on the coordinate plane.	Prior Knowledge Skills
predictions, both within mathematics and as mathematics is applied in different contexts-in particular, contexts that arise in relation to linear, quadratic, and exponential situations.		Identify X axis. Identify Y axis. Graph points on a coordinate plane. Enter coordinates into a table.

Algebra and Functions		
Focus 2: Connecting Algebra to Functions		
Cluster	2019 Math COS Standard	
Graphs can be used to obtain exact or approximate solutions of equations,	14. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$. a. Find the approximate solutions of an equation graphically, using tables of values, or finding successive approximations, using technology where appropriate. Extend to cases where $f(x)$ and/or $g(x)$ are polynomial, trigonometric (sine and cosine), logarithmic, radical, and general piecewise functions.	
inequalities, and	Learning Objectives	Prior Knowledge Skills
systems of equations and inequalitiesincluding systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).	\square ALGII.14.1: Define function, function notation, linear, polynomial, trigonometric (sine and cosine), rational, radical, absolute value, exponential, and logarithmic functions, general piecewise functions, and transitive property. \square ALGII.14.2: Explain, using the transitive property, why the x-coordinates of the points of the graphs are solutions to the equations. \square ALGII.14.3: Find solutions to the equations y $=f(x)$ and $y=g(x)$ using graphing technology. ALGII.14.4: Solve equations for y. ALGII.14.5: Apply the properties of multiplicative inverses. ALGII.14.6: Apply the properties of exponents.	Define domain, range, relation, function, table of values, and mappings. Determine the appropriate domain for a given function. Identify functions from information in tables, sets of ordered pairs, and mappings. Translate verbal phrases into a function. Graph a function on a coordinate plane. Arrange data given as ordered pairs into a table and a table of values into ordered pairs.

*Critical Standard

	\squareALGII.14.7: Demonstrate use of a graphing technology, including using a table, making a graph, and finding successive approximations.	

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions can be described by using a variety of	15. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Extend to polynomial, trigonometric (sine and cosine), logarithmic, radical, and general piecewise functions.	
representations:	Learning Objectives	Prior Knowledge Skills
mapping diagrams, function notation (e.g., $f(x)=x 2$), recursive definitions, tables, and graphs.	\square ALGII.15.1: Compare properties of two functions each represented in a different way. \square ALGII.15.2: Identify properties of functions defined algebraically. \square ALGII.15.3: Identify properties of functions defined by verbal description. \square ALGII.15.4: Identify properties of functions defined graphically. \square ALGII.15.5: Identify properties of functions defined numerically in tables.	Compare properties of two functions each represented in a different way. Identify properties of functions defined algebraically. Identify properties of functions defined by verbal description. Identify properties of functions defined graphically. Identify properties of functions defined numerically in tables.

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions that are members of the same family have distinguishing attributes	16. *Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k \cdot f(x), f(k \cdot x)$, and $f(x+$ k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.	
(structure)	Learning Objectives	Prior Knowledge Skills
common to all functions within that family.	\square ALGII.16.1: Recognize even and odd functions from algebraic expressions for them. \square ALGII.16.2: Recognize even and odd functions from their graphs. \square ALGII.16.3: Experiment with various cases of functions and illustrate an explanation of the effects on the graph using technology. \square ALGII.16.4: Find the value of k given the graphs of $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x$ $+k$) for specific values of k. \square ALGII.16.5: Identify the effect on the graph of replacing $f(x)$ by $k f(x)$ and $f(k x)$ for specific values of k. \square ALGII.16.6: Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$ and $f(x+k)$ for specific values of k .	Recognize even and odd functions from algebraic expressions for them. Recognize even and odd functions from their graphs. Identify the effect on the graph of replacing $f(x)$ by k $f(x)$ and $f(k x)$ for specific values of k.

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions can be represented graphically, and key features of the graphs, including zeros, intercepts, and,	17. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries (including even and odd); end behavior; and periodicity. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.	
	Learning Objectives	Prior Knowledge Skills
rate of change and maximum/ minimum values, can be associated with and interpreted in terms of the equivalent symbolic representation.	\square ALGII.17.1: Define intercepts, intervals, relative maxima, relative minima, symmetry, end behavior, and periodicity. \square ALGII.17.2: For a function that models a relationship between two quantities, find the periodicity. \square ALGII.17.3: For a function that models a relationship between two quantities, find the end behavior. \square ALGII.17.4: For a function that models a relationship between two quantities, find the symmetry. \square ALGII.17.5: For a function that models a relationship between two quantities, find the intervals where the function is increasing, decreasing, positive, or negative.	Compare properties of two functions each represented in a different way. Identify properties of functions defined algebraically. Identify properties of functions defined by verbal description. Identify properties of functions defined graphically. Identify properties of functions defined numerically in tables. Define standard function types as quadratic and linear.

| | \squareALGII.17.6: For a function that models a
 relationship between two quantities, find
 the relative maxima and minima.
 \squareALGII.17.7: For a function that models a
 relationship between two quantities, find
 the x and y intercepts. |
| :--- | :--- | :--- | :--- |

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions can be represented graphically, and	18. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.	
key features of	Learning Objectives	Prior Knowledge Skills
the graphs, including zeros, intercepts, and, when relevant, rate of change and maximum/ minimum values, can be associated with and interpreted in terms of the equivalent symbolic representation.	ALGII.18.1: Define domain, range, relation, function, table of values, and mappings. ALGII.18.2: Determine the appropriate domain for a given function. ALGII.18.3: Identify functions from information in tables, sets of ordered pairs, and mappings. ALGII.18.4: Translate verbal phrases into a function. ALGII.18.5: Arrange data given as ordered pairs into a table and a table of values into ordered pairs. \square ALGII.18.6: Identify the x and y values in an ordered pair.	Define domain, range, relation, function, table of values, and mappings. \square Determine the appropriate domain for a given function. Identify functions from information in tables, sets of ordered pairs, and mappings. Translate verbal phrases into a function. Graph a function on a coordinate plane. Arrange data given as ordered pairs into a table and a table of values into ordered pairs.

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions can be represented graphically, and key features of the	19. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.	
graphs, including	Learning Objectives	Prior Knowledge Skills
zeros, intercepts, and, when relevant, rate of change and maximum/ minimum values, can be associated with and interpreted in terms of the equivalent symbolic representation.	ALGII.19.1: Define average rate of change as slope. \square ALGII.19.2: Estimate the rate of change from a graph (rise/run). \square ALGII.19.3: Interpret the average rate of change. \square ALGII.19.4: Calculate the average rate of change. \square ALGII.19.5: Compute the slope of a line given two ordered pairs. \square ALGII.19.6: Identify the slope, given slopeintercept form.	Define rate of change. Read data points on a table Understand slope is a divided by the change in the y values over the change in x values.

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions can be represented graphically, and key features of the graphs, including zeros, intercepts, and, when relevant, rate of change and maximum/ minimum values, can be associated with and interpreted in terms of the equivalent	20. *Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions. a. Graph polynomial functions expressed symbolically, identifying zeros when suitable factorizations are available, and showing end behavior. b. Graph sine and cosine functions expressed symbolically, showing period, midline, and amplitude. c. Graph logarithmic functions expressed symbolically, showing intercepts and end behavior. d. Graph reciprocal functions expressed symbolically, identifying horizontal and vertical asymptotes. e. Graph square root and cube root functions expressed symbolically. f. Compare the graphs of inverse functions and the relationships between their key features, including but not limited to quadratic, square root, exponential, and logarithmic functions.	
	Learning Objectives	Prior Knowledge Skills
	\square ALGII.20.1: Graph functions expressed symbolically by hand in simple cases. \square ALGII.20.2: Graph functions expressed symbolically using technology for more complicated cases.	Recall how to graph parent functions. Use a graphing calculator to graph a linear equation. Calculate the square and cube root of a number. Identify the intercepts of a graphed function.

	ALGII.20.3: Solve polynomial function for their zeros. ALGII.20.4: Plot the zeros on a coordinate plane. ALGII.20.5: Recognize end behavior on a graph. ALGII.20.6: Review multiplicity of zeros. ALGII.20.7: Graph trigonometric functions showing period, midline, and amplitude. ALGII.20.8: Graph logarithmic functions showing intercepts and end behavior. ALGII.20.9: Graph reciprocal functions, identifying horizontal and vertical asymptotes. ALGII.20.10: Define square root and cube root. ALGII.20.11: Graph cube root functions. ALGII.20.12: Graph square root functions. ALGII.20.13: Define exponential function, logarithmic function, trigonometric function, intercepts, end behavior, period, midline, and amplitude. ALGII.20.14: Graph exponential functions showing intercepts and end behavior.

Algebra and Functions		
Focus 3: Functions		
Cluster	2019 Math COS Standard	
Functions can be represented graphically, and key features of the	21. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle, building on work with non-right triangle trigonometry.	
graphs, including	Learning Objectives	Prior Knowledge Skills
zeros, intercepts, and, when relevant, rate of change and maximum/ minimum values, can be associated with and interpreted in terms of the equivalent symbolic representation.	\square ALGII.21.1: Define unit circle, trigonometric functions, periodic functions, and radians. \square ALGII.21.2: Apply special right triangles to trigonometric ratios. \square ALGII.21.3: Demonstrate periodicity of trigonometric functions. \square ALGII 21.4: Recall Law of Sines and Law of Cosines. \square ALGII.21.4: Recall Pythagorean Theorem.	\square Recall how to find the missing side lengths of a right triangle using Pythagorean Theorem. \square Recall the basic trig ratios such as sine, cosine, and tangent. \square Identify the ratios of 30-60-90 and 45-45-90 triangles.

Data Analysis. Statistics, and Probability		
Focus 1: Quantitative Literacy		
Cluster	2019 Math COS Standard	
Mathematical and statistical reasoning about data can be used	23. *Use mathematical and statistical reasoning about normal distributions to draw conclusions and assess risk; limit to informal arguments. Example: If candidate A is leading candidate B by 2% in a poll which has a margin of error of less than 3%, should we be surprised if candidate B wins the election?	
to evaluate	Learning Objectives	Prior Knowledge Skills
conclusions and assess risks.	ALGII.23.1: Define margin of error and confidence interval. \square ALGII 23.2: Justify the mathematical and statistical reasoning.	List the properties involved in solving a multi-step equation using deductive reasoning. Solve a multi-step equation using the properties, if the original equation has a solution. Define equation, inequality, and variable. Set up equations and inequalities to represent the given situation, using correct mathematical operations and variables. Calculate a solution or solution set by combining like terms, isolating the variable, and/or using inverse operations. Test the found number or number set for accuracy by substitution. Recall solving one step equations and inequalities.

Data Analysis. Statistics, and Probability		
Focus 1: Quantitative Literacy		
Cluster	2019 Math COS Standard	
Making and defending informed databased decisions is	24. Design and carry out an experiment or survey to answer a question of interest, and write an informal persuasive argument based on the results. Example: Use the statistical problem-solving cycle to answer the question, "Is there an association between playing a musical instrument and doing well in mathematics?"	
a characteristic of	Learning Objectives	Prior Knowledge Skills
a quantitatively literate person.	ALGII.24.1: Determine your question of interest. ALGII.24.2: Design your study (experiment, survey, etc.). ALGII.24.3: Collect data. ALGII.24.4: Analyze results. ALGII 24.5: Interpret results. ALGII 24.6: Develop an informal persuasive argument. OBJECTIVES FOLLOW THE STEPS OF THE STATISTICAL PROBLEM-SOLVING CYCLE.	Define categorical data. Write arguments to support claims with clear reasons and relevant evidence. - Infer information from data distributions.

Data Analysis. Statistics, and Probability		
Focus 2: Visualizing and Summarizing Data		
Cluster	2019 Math COS Standard	
Distributions of quantitative data (continuous or discrete) in one variable should be described in	25. *From a normal distribution, use technology to find the mean and standard deviation and estimate population percentages by applying the empirical rule. a. Use technology to determine if a given set of data is normal by applying the empirical rule. b. Estimate areas under a normal curve to solve problems in context, using calculators, spreadsheets, and tables as appropriate.	
the context of the	Learning Objectives	Prior Knowledge Skills
data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or	\square ALGII.25.1: Define normal distribution, mean, standard deviation, and empirical rule. $\square \quad$ ALGII.25.2: Use technology to calculate mean and standard deviation. \square ALGII.25.3: Use technology (ex. calculator, Microsoft Excel, etc.) to estimate areas under the normal curve. \square ALGII 25.4: Analyze data sets to determine if appropriate.	\square Calculate the mean. \square Define standard deviation. \square Know the empirical rule.

more subgroups with respect to a variable.

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
Study designs are of three main types: sample survey, experiment, and observational study.	26. Describe the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. Examples: random assignment in experiments, random selection in surveys and observational studies.	
	Learning Objectives	Prior Knowledge Skills
	\square ALGII.26.1: Define sample surveys, experiments, randomization, and observational studies.	Define sample surveys. Define experiment. Define observational studies. Define random assignment.

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
The role of randomization is different in randomly selecting samples and in randomly assigning subjects to experimental	27.Distinguish between a statistic and a parameter and use statistical processes to make inferences about population parameters based on statistics from random samples from that population. treatment	Learning Objectives
ALGII.27.1: Define statistic, parameter, statistical process, and random sample.	Define statistic, parameter, statistical process, and random sample.	

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
The role of randomization is different in randomly selecting samples and in randomly assigning subjects to experimental treatment groups.	28. Describe differences between randomly selecting samples and randomly assigning subjects to experimental treatment groups in terms of inferences drawn regarding a population versus regarding cause and effect. Example: Data from a group of plants randomly selected from a field allows inference regarding the rest of the plants in the field, while randomly assigning each plant to one of two treatments allows inference regarding differences in the effects of the two treatments. If the plants were both randomly selected and randomly assigned, we can infer that the difference in effects of the two treatments would also be observed when applied to the rest of the plants in the field.	
	Learning Objectives	Prior Knowledge Skills
	\square ALGII.28.1: Define random selecting, random assigning, experimental treatment group, and control group. \square ALGII.28.2: Use data from a random sample to make an inference about a population. \square ALGII.28.3: Distinguish between random selecting and random assigning and between control group and experimental treatment group.	\square Define randomization.

Data Analysis. Statistics, and Probability	
Focus 3: Statistical Inference	
Cluster	2019 Math COS Standard
The scope and validity of statistical inferences are dependent on the role of randomization in the study design.	29. Explain the consequences, due to uncontrolled variables, of non-randomized assignment of subjects to groups in experiments. Example: Students are studying whether or not listening to music while completing mathematics homework improves their quiz scores. Rather than assigning students to either listen to music or not at random, they simply observe what the students do on their own and find that the music-listening group has a higher mean quiz score. Can they conclude that listening to music while studying is likely to raise the quiz scores of students who do not already listen to music? What other factors may have been responsible for the observed difference in mean quiz scores?

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
Bias, such as sampling, response, or nonresponse bias, may occur in surveys, yielding results that are not representative of the population of interest.	30. *Evaluate where bias, including sampling, response, or nonresponse bias, may occur in surveys, and whether results are representative of the population of interest. Example: Selecting students eating lunch in the cafeteria to participate in a survey may not accurately represent the student body, as students who do not eat in the cafeteria may not be accounted for and may have different opinions, or students may not respond honestly to questions that may be embarrassing, such as how much time they spend on homework.	
	Learning Objectives	Prior Knowledge Skills
	ALGII.30.1: Define bias (sampling, response, or nonresponse bias). ALGII.30.2: Interpret survey results. ALGII.30.3: Determine where bias may occur.	Define bias (sampling, response, or nonresponse bias). \square Interpret survey results.

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
The larger the sample size, the less the expected variability in the sampling distribution of a sample statistic.	31. Evaluate the effect of sample size on the expected variability in the sampling distribution of a sample statistic. a. Simulate a sampling distribution of sample means from a population with a known distribution, observing the effect of the sample size on the variability. b. Demonstrate that the standard deviation of each simulated sampling distribution is the known standard deviation of the population divided by the square root of the sample size.	
	Learning Objectives	Prior Knowledge Skills
	\square ALGII.31.1: Define data, random sampling, population, variation, prediction, estimation, standard deviation and inference. \square ALGII 31.2: Calculate standard deviation of the samples. \square ALGII.31.3: Compare and contrast the random sampling data to the population. \square ALGII.31.4: Predict an outcome of the entire population based on random samplings. \square ALGII.31.5: Collect data from population randomly, choosing same size samples.	Define bias (sampling, response, or nonresponse bias). Interpret survey results. Determine where bias may occur.

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
The sampling distribution of a sample statistic formed from repeated samples for a given sample size drawn from a population can be used to	32. *Produce a sampling distribution by repeatedly selecting samples of the same size from a given population or from a population simulated by bootstrapping (resampling with replacement from an observed sample). Do initial examples by hand, then use technology to generate a large number of samples. a. Verify that a sampling distribution is centered at the population mean and approximately normal if the sample size is large enough. b. Verify that 95% of sample means are within two standard deviations of the sampling distribution from the population mean. c. Create and interpret a 95% confidence interval based on an observed mean from a sampling distribution.	
identify typical	Learning Objectives	Prior Knowledge Skills
behavior for that statistic. Examining several such sampling distributions leads to estimating a set of plausible values for the population parameter, using the margin of	\square ALGII.32.1: Define data, random sampling, population, variation, prediction, estimation, normal, empirical rule, standard deviation and inference. \square ALGII 32.2: Calculate standard deviation of the samples by hand and using technology to justify the empirical rule. \square ALGII.32.3: Predict an outcome of the entire population based on random samplings. \square ALGII.32.4: Collect data from population randomly, choosing same size samples.	\square Collect data from population randomly, choosing same size samples.

error as a		
measure that		
describes the		
sampling		
variability.		

Data Analysis. Statistics, and Probability		
Focus 3: Statistical Inference		
Cluster	2019 Math COS Standard	
The sampling distribution of a sample statistic formed from repeated samples for a given sample size drawn from a population can be used to identify typical behavior for that	33. *Use data from a randomized experiment to compare two treatments; limit to informal use of simulations to decide if an observed difference in the responses of the two treatment groups is unlikely to have occurred due to randomization alone, thus implying that the difference between the treatment groups is meaningful. Example: Fifteen students are randomly assigned to a treatment group that listens to music while completing mathematics homework and another 15 are assigned to a control group that does not, and their means on the next quiz are found to be different. To test whether the differences seem significant, all the scores from the two groups are placed on index cards and repeatedly shuffled into two new groups of 15 each, each time recording the difference in the means of the two groups. The differences in means of the treatment and control groups are then compared to the differences in means of the mixed groups to see how likely it is to occur.	
statistic.	Learning Objectives	Prior Knowledge Skills
Examining several such sampling distributions leads to estimating a set of plausible values for the population parameter, using	ALGII.33.1: Define randomized experiment, simulation, and parameter. $\square \quad$ ALGII.33.2: Determine if differences in two parameters are significant.	\square Define randomized experiment, simulation, and parameter.

the margin of		
error as a		
measure that		
describes the		
sampling		
variability.		

Geometry and Measurement		
Focus 1: Measurement		
Cluster	2019 Math COS Standard	
When an object is the image of a known object	34. Define the radian measure of an angle as the constant of proportionality of the length of an arc it intercepts to the radius of the circle; in particular, it is the length of the arc intercepted on the unit circle.	
under a similarity	Learning Objectives	Prior Knowledge Skills
transformation, a length, area, or volume on the image can be computed by using proportional relationships.	ALGII.34.1: Define arc length, radian measure, and sector. \square ALGII.34.2: Prove the length of the arc intercepted by an angle is proportional to the radius by similarity. \square ALGII.34.3: Discuss the relationship between arc length and angles. \square ALGII.34.4: Apply the arc length formula.	\square Define arc length, radian measure, and sector.

Geometry and Measurement		
Focus 4: Solving Applied Problems and Modeling in Geometry		
Cluster	2019 Math COS Standard	
Recognizing congruence,	35. Choose trigonometric functions (sine and cosine) to model periodic phenomena with specified amplitude, frequency, and midline.	
similarity,	Learning Objectives	Prior Knowledge Skills
symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry in real-world contexts, provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.	\square ALGII.35.1: Define amplitude, frequency, period, vertical and horizontal translation, and midline. \square ALGII.35.2: Calculate amplitude, frequency, period, vertical and horizontal translations, and midline from given data. \square ALGII.35.3: Graph the trigonometric function (sine and cosine) that model periodic phenomena. $\square \quad$ ALGII.35.4: Graph the sine and cosine parent functions.	\square Recall a vertical and horizontal line. \square Identify the sine and cosine of a triangle.

Geometry and Measurement		
Focus 4: Solving Applied Problems and Modeling in Geometry		
Cluster	2019 Math COS Standard	
Recognizing congruence,	36. Prove the Pythagorean identity $\sin 2(\theta)+\cos 2(\theta)=1$ and use it to calculate trigonometric ratios.	
similarity,	Learning Objectives	Prior Knowledge Skills
symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry in real-world contexts, provides a means of building understanding of these concepts and is a powerful tool for solving problems related	ALGII.36.1: Define Pythagorean identity $\sin 2$ $(\theta)+\cos 2(\theta)=1$. \square ALGII.36.2: Identify the sine and cosine of special angles. \square ALGII.36.3: Identify trigonometric ratios (sine, cosine, and tangent). \square ALGII.36.4: Square fractions.	Calculate the exponent of a fraction. Recall the basic trig ratios (sine, cosine, and tangent).

\square
to the physical world in which we live.

Geometry and Measurement		
Focus 4: Solving Applied Problems and Modeling in Geometry		
Cluster	2019 Math COS Standard	
Recognizing congruence, similarity,	37. Derive and apply the formula $A=1 / 2 \cdot a b \cdot \sin (\theta)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side, extending the domain of sine to include right and obtuse angles.	
symmetry,	Learning Objectives	Prior Knowledge Skills
measurement opportunities, and other geometric ideas, including right triangle trigonometry in real-world contexts, provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.	ALGII.37.1: Define the formula A = $1 / 2 \cdot a b \cdot \sin (\theta)$ for the area of a triangle. \square ALGII.37.2: Derive the formula $A=$ $1 / 2 \cdot a b \cdot \sin (\theta)$ for the area of a triangle when given base and height. \square ALGII.37.3: Apply the formula $A=1 / 2 \cdot a b \cdot \sin (\theta)$ for the area of a triangle.	Recall how to find the area of a triangle. Calculate the missing value in an equation.

| Geometry and Measurement |
| :--- | :--- | :--- | | Focus 4: Solving Applied Problems and Modeling in Geometry |
| :--- |
| Cluster |\quad| 2019 Math COS Standard |
| :--- |

\square
to the physical world in which we live.

Mathematical

Modeling

Mathematical Modeling

Modeling		
Cluster	2019 Math COS Standard	
Mathematical modeling and statistical problem-solving are extensive, cyclical processes	1. Use the full Mathematical Modeling Cycle or Statistical Problem-Solving Cycle to answer a real-world problem of student interest, incorporating standards from across the course. Examples: Use a mathematical model to design a three-dimensional structure and determine whether design constraints are met; to decide under what conditions the purchase of an electric vehicle will save money; to predict the extent to which the level of the ocean will rise due to the melting polar ice caps; or to interpret the claims of a statistical study regarding the economy.	
that can be used	Learning Objectives	Prior Knowledge Skills
to answer significant realworld problems.	\square MMOD.1.1: Define the mathematical model and the statistical problem-solving cycle. \square MMOD.1.2: Use the mathematical model or the statistical problem-solving cycle to solve a real-world problem. \square MMOD.1.3: Determine which model to use, mathematical modeling or statistical problem solving, in a real-world problem.	Recall estimation strategies. Analyze the given word problem to set up a mathematical problem. Recall problem solving methods.

Financial Planning and Management

Cluster
 Mathematical

 models involving growth and decay are useful in solving realworld problems involving borrowing and investing;spreadsheets are a frequently used and powerful tool to assist with modeling financial situations.

2019 Math COS Standard

2. Use elements of the Mathematical Modeling Cycle to solve real-world problems involving finances.

Learning Objectives

MMOD.2.1: Analyze a personal budget.MMOD.2.2: Design a monthly budget, including investments, savings, borrowing and credit.
\square MMOD.2.3: Differentiate the various modes of payment options (cash, check, money order, debit cards, credit cards).
\square MMOD.2.4: Determine and prioritize personal needs and wants according to current or expected income (housing, food, clothing, transportation, wellness needs, healthcare, utilities, insurance, benefits).

Prior Knowledge Skills

Life Skills

Experience with checking and savings accounts.
Real-world examples of credit cards
Determine personal needs and contrast with wants.
\square Analyze data from tables.
\square Summarize categorical data for two categories in two-way frequency tables.
\square Recognize possible associations and trends in the data.
\square Create a scatter plot and line of best fit using data from a spreadsheet.
\square Organize numerical data in a spreadsheet.
\square Create graphical representations from classroom-generated data to model consumer costs.
\square Create graphical representations from classroom-generated data to predict future outcomes.
$\square \quad$ Create graphical representations from equations to model consumer costs.
\square Create graphical representations from equations to predict future outcomes.
\square Create graphical representations from tables to model consumer costs.
\square Create graphical representations from tables to predict future outcomes.

Cluster	2019 Math COS Standard	
Mathematical models involving	3. Organize and display financial information using arithmetic sequences to represent simple interest and straight-line depreciation.	
growth and decay	Learning Objectives	Prior Knowledge Skills
are useful in solving real-world problems involving borrowing and investing; spreadsheets are a frequently used and powerful tool to assist with modeling financial situations.	\square MMOD.3.1: Define arithmetic sequences, simple interest, and straight-line depreciation. \square MMOD.3.2: Analyze the long-term costs of borrowing money. \square MMOD.3.3: Calculate straight-line depreciation. - MMOD.3.4: Calculate simple interest. \square MMOD.3.5: Identify the formula to compute straight-line depreciation. \square MMOD.3.6: Identify the formula to compute simple interest.	Define interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error. - Apply definitions to context in Real-world problems.

Financial Planning and Management

Cluster

Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing; spreadsheets are a frequently used and powerful tool to assist with modeling financial situations.

2019 Math COS Standard
4. Organize and display financial information using geometric sequences to represent compound interest and proportional depreciation, including periodic (yearly, monthly, weekly) and continuous compounding.
a. Explain the relationship between annual percentage yield (APY) and annual percentage rate (APR) as values for r in the formulas $A=P(1+r)^{t}$ and $A=P e^{r t}$.
Le

Learning Objectives
\square MMOD.4.1: Define geometric sequence compound interest, proportional depreciation, frequent compounding, continuous compounding, annual percentage yield and annual percentage rate.
\square MMOD.4.2: Calculate proportional depreciation.
\square MMOD.4.3: Identify the formula for proportional depreciation.
\square MMOD.4.4: Calculate compound interest.
\square MMOD.4.5: Calculate simple interest.
\square MMOD.4.6: Compare compound and simple interest.
\square MMOD.4.7: Identify the formula to compute compound interest.
\square MMOD.4.8: Identify the formula to compute simple interest.

Prior Knowledge Skills

$\square \quad$ Evaluate a function rule given the independent variable.Define arithmetic and geometric sequence, and input-output pairs.
\square Define sequences and recursively defined sequences
\square Recognize that sequences are functions whose domain is the set of all positive integers and zero
\square Calculate the common ratio of a geometric sequence.

Financial Planning and Management

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing;
spreadsheets are a frequently used and powerful tool to assist with modeling financial situations.
5. Compare simple and compound interest, and straight-line and proportional depreciation.

Learning Objectives	Prior Knowledge Skills

\square MMOD.5.1: Define simple and compound interest, and straight-line and proportional depreciation.
\square MMOD.5.2: Compare simple and compound interests.
\square MMOD.5.3: Identify the formula to compute compound interest.MMOD.5.4: Identify the formula to compute simple interest.
\square MMOD.5.5: Compare straight-line and proportional depreciation.
\square Define interest, tax, markups and markdowns; gratuities, commissions, fees, percent increase and decrease; and percent error.
\square Apply definitions to context in Real-world problems.

Financial Planning and Management

Cluster
 2019 Math COS Standard

Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing; spreadsheets are a frequently-used and powerful tool to assist with modeling financial situations.
6. Investigate growth and reduction of credit card debt using spreadsheets, including variables such as beginning balance, payment structures, credits, interest rates, new purchases, finance charges, and fees.

Learning Objectives	Prior Knowledge Skills
\square MMOD.6.1: Define previous balance, payments, credits, interest rate, finance charge fees, credit score, exponential growth, and exponential decay.	Life Skills Experience with checking and savings accounts. Real-world examples of credit cards. Recall the formula of an exponential function.
MMOD.6.2: Use exponential growth and exponential decay to model given relationships between quantities.	Recall the slope-intercept form of a linear function. Define b as growth or decay factor in the context of an exponential problem.
\square MMOD.6.3: Calculate cost of credit card interest with benefits.	Define k as the initial amount in the context of an exponential problem.

\square MMOD.6.4: Discuss cause and effect between use of credit and personal credit score.
$\square \quad$ MMOD.6.5: Calculate a finance charge at various percentages.
\square MMOD.6.6: Assess a monthly credit card statement
\square MMOD.6.7: Identify benefits associated with credit cards.
\square MMOD.6.8: Identify the long-term costs of borrowing money.

Financial Planning and Management

Cluster
 2019 Math COS Standard

Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing; spreadsheets are a frequently-used and powerful tool to assist with modeling financial situations.
7. Compare and contrast housing finance options including renting, leasing to purchase, purchasing with a mortgage, and purchasing with cash.
a. Research and evaluate various mortgage products available to consumers.
b. Compare monthly mortgage payments for different terms, interest rates, and down payments.
c. Analyze the financial consequence of buying a home (mortgage payments vs. potentially increasing resale value) versus investing the money saved when renting, assuming that renting is the less expensive option.

Learning Objectives	Prior Knowledge Skills

\square MMOD.7.1: Define mortgage and lease.
Life Skills
\square MMOD.7.2: Identify various types of mortgages. Examples: 30-year loan, 15-
\square Identify different types of housing in local community. year loan, fixed rate loans, adjustable-rate loans, VA loans, FHA loans.
\square MMOD.7.3: Investigate housing costs in
local area.
MMOD.7.4: Identify housing options.

Financial Planning and Management

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing;
spreadsheets are a frequently used and powerful tool to assist with modeling financial situations.
8. Investigate the advantages and disadvantages of various means of paying for an automobile, including leasing, purchasing by cash, and purchasing by loan.

Learning Objectives	Prior Knowledge Skills
\square MMOD.8.1: Define depreciation and	Life Skills
\quad leasing.	$\square \quad$ Use the internet to determine price of vehicles at local dealerships.
\square MMOD.8.2: Compare the cost of	\square Knowledge of payment types through commercials.

Design in Three Dimensions

Cluster

Two- and threedimensional representations, coordinates systems, geometric transformations, and scale models are useful tools in planning, designing, and constructing solutions to realworld problems.

2019 Math COS Standard
9. Use the Mathematical Modeling Cycle to solve real-world problems involving the design of threedimensional objects.

Learning Objectives	Prior Knowledge Skills
MMOD.9.1: Define three-dimensional, scale factor, and transformations. MMOD.9.2: Define the problem to be answered. \square MMOD.9.3: Make assumptions to simplify the situation. MMOD.9.4: Identify variables in the situation and select those that represent essential features in order to formulate a mathematical model. MMOD.9.5: Analyze and perform operations to draw conclusions. \square MMOD.9.6: Assess the model and solutions in terms of the original situation. \square MMOD.9.7: Refine and extend the model as needed. MMOD.9.8: Report on the conclusions and the reasoning.	Compare and contrast the random sampling data to the population. Analyze conclusions of the sample to determine its appropriateness for the population. \square Predict an outcome of the entire population based on random samplings. \square Justify the mathematical and statistical reasoning.

Design in Three Dimensions

\section*{| Cluster | 2019 Math COS Standard |
| :--- | :--- |}

Two- and threedimensional representations, coordinates systems, geometric transformations, and scale models are useful tools in planning, designing, and constructing solutions to real-world problems.
10. Construct a two-dimensional visual representation of a three-dimensional object or structure.
a. Determine the level of precision and the appropriate tools for taking the measurements in constructing a two-dimensional visual representation of a three-dimensional object or structure.
b. Create an elevation drawing to represent a given solid structure, using technology where appropriate.
c. Determine which measurements cannot be taken directly and must be calculated based on other measurements when constructing a two-dimensional visual representation of a threedimensional object or structure.
d. Determine an appropriate means to visually represent an object or structure, such as drawings on paper or graphics on computer screens.

Learning Objectives	Prior Knowledge Skills
MMOD.10.1: Define two-dimensional figure, three-dimensional figure, precision, area, elevation drawing, scale factor, model, and perimeter. \square MMOD.10.2: Calculate precise measurements. \square MMOD.10.3: Describe the relationship between two- and three-dimensional figures. \square MMOD.10.4: Identify appropriate tools for taking measurements of various objects.	\square Define two-dimensional figure, three-dimensional figure, and plane section. List attributes of three-dimensional figures. List attributes of two-dimensional figures. Describe the relationship between two- and threedimensional figures. Define scale factor, similarity, and proportions. Compare two figures in terms of similarity. Create proportional equations from given information. Solve proportional equations. Prove that equivalent ratios are proportions.

Design in Three Dimensions

Cluster

Two- and threedimensional representations, coordinates systems, geometric transformations, and scale models are useful tools in planning, designing, and constructing solutions to real-world problems.

2019 Math COS Standard
11. Plot coordinates on a three-dimensional Cartesian coordinate system and use relationships between coordinates to solve design problems.
a. Describe the features of a three-dimensional Cartesian coordinate system and use them to graph points.
b. Graph a point in space as the vertex of a right prism drawn in the appropriate octant with edges along the x, y, and z axes.
c. Find the distance between two objects in space given the coordinates of each. Examples: Determine whether two aircraft are flying far enough apart to be safe; find how long a zipline cable would need to be to connect two platforms at different heights on two trees.
d. Find the midpoint between two objects in space given the coordinates of each. Example: If two asteroids in space are traveling toward each other at the same speed, find where they will collide.

\square MMOD.11.4: Calculate the midpoint between two objects in space.
\square MMOD.11.5: Compare and contrast a threedimensional and two-dimensional Cartesian coordinate system.
\square MMOD.11.6: Determine how to graph a point in a two-dimensional coordinate system.
\square MMOD.11.7: Calculate the distance between two objects.

| \square | MMOD.11.8: Calculate the midpoint between |
| :--- | :--- | :--- | :--- |
| | two objects. |
| \square | MMOD.11.9: Identify a diagram that shows a |
| two-dimensional and three-dimensional | |
| coordinate system. | |\quad.

Design in Three Dimensions

Cluster

Two- and threedimensional representations, coordinates systems, geometric transformations, and scale models are useful tools in planning, designing, and constructing solutions to realworld problems.

2019 Math COS Standard
12. Use technology and other tools to explore the results of simple transformations using threedimensional coordinates, including translations in the x, y, and/or z directions; rotations of $90^{\circ}, 180^{\circ}$, or 270° about the x, y, and z axes; reflections over the $x y, y z$, and $x y$ planes; and dilations from the origin.
Example: Given the coordinates of the corners of a room in a house, find the coordinates of the same room facing a different direction.

Learning Objectives	Prior Knowledge Skills

\square MMOD.12.1: Define translation, rotation, and dilation.
\square MMOD.12.2: Use technology or other tools to interpret the results of transformations (translation, rotation, and dilation).
\square MMOD.12.3: Use technology or other tools to rotate an object 90ㅇ or 180ㅇ.
\square MMOD.12.4: Use technology or other tools to dilate an object.
\square MMOD.12.5: Use technology or other tools to translate an object.
\square MMOD.12.6: Use technology or other tools to reflect an object.

Prior Knowledge Skills

Define dilation.
\square Recall how to find scale factor.
\square Give examples of scale drawings.
\square Recognize translations.
\square Recognize reflections.
\square Recognize rotations.

Design in Three Dimensions

Cluster	2019 Math COS Standard

Two- and threedimensional representations, coordinates systems, geometric transformations, and scale models are useful tools in planning, designing, and constructing solutions to realworld problems.
13. Create a scale model of a complex three-dimensional structure based on observed measurements and indirect measurements, using translations, reflections, rotations, and dilations of its components. Example: Develop a plan for a bridge structure using geometric properties of its parts to determine unknown measures and represent the plan in three dimensions.

Learning Objectives	Prior Knowledge Skills
\square MMOD.13.1: Define observed	\square Define dilation.
\quad measurements, indirect measurements,	\square Recall how to find scale factor.
\quad scale models, complex three-dimensional	\square Give examples of scale drawings.
\quad shapes, translations, reflections, rotations,	\square
\quad Recognize translations.	
\quad and dilations.	\square
\square Recognize reflections.	
\square MMOD.13.2: Apply geometric concepts in	\square

modeling situations.
\square MMOD.13.3: Perform all transformations (i.e., translations, reflections, rotations, dilations).
MMOD.13.4: Calculate scale factor.

Creating Functions to Model Change in the Environment and Society

Cluster	2019 Math COS Standard	
Functions can be used to represent general trends in conditions that change over time and to predict future conditions based on present observations.	14. Use elements of the Mathematical Modeling Cycle to make predictions based on measurements that change over time, including motion, growth, decay, and cycling.	
	Learning Objectives	Prior Knowledge Skills
	MMOD.14.1: Define motion, growth, decay, and cycling. MMOD.14.2: Define the problem to be answered. MMOD.14.3: Make assumptions to simplify the situation. MMOD.14.4: Identify variables in the situation, and select those that represent essential features in order to formulate a mathematical model. MMOD.14.5: Analyze and performing operations to draw conclusions. \square MMOD.14.6: Assess the model and solutions in terms of the original situation. \square MMOD.14.7: Refine and extend the model as needed. \square MMOD.14.8: Report on the conclusions and the reasoning.	\square Solve the equation represented by the real-world situation. \square Set up an equation to represent the given situation, using correct mathematical operations and variables. \square Given a contextual situation, interpret and defend the solution in the context of the original problem. \square Define equation, expression, variable, equality, and inequality.

Creating Functions to Model Change in the Environment and Society

Cluster

Functions can be used to represent general trends in conditions that change over time and to predict future conditions based on present observations.

2019 Math COS Standard

15. Use regression with statistical graphing technology to determine an equation that best fits a set of bivariate data, including nonlinear patterns.
Examples: global temperatures, stock market values, hours of daylight, animal population, carbon dating measurements, online streaming viewership.
a. Create a scatter plot with a sufficient number of data points to predict a pattern.
b. Describe the overall relationship between two quantitative variables (increase, decrease, linearity, concavity, extrema, inflection) or pattern of change.
c. Make a prediction based upon patterns.

Learning Objectives
\square MMOD.15.1: Define bivariate scatter plot, outlier, cluster, linear, nonlinear, positive, and negative association, slope, intercept, linear, equation, concave up, concave down, and bivariate.
\square MMOD.15.2: Make a prediction based upon patterns.
\square MMOD.15.3: Describe patterns found in a scatter plot.
\square MMOD.15.4: Demonstrate how to label and plot information on a scatter plot (dot plot).
\square MMOD.15.5: Distinguish the difference between positive and negative correlation.
\square MMOD.15.6: When given data points, use technology to find the equation of a line.

Prior Knowledge Skills

\square Define bivariate scatter plot, quantitative data, outlier, cluster, linear, nonlinear, and positive and negative association.
$\square \quad$ Describe patterns found in a scatter plot.
\square Demonstrate how to label and plot information on a scatter plot (dot plot).
\square Distinguish the difference between positive and negative correlation.
\square Recall how to describe the spread of the scatter plot (dot plot).
\square Create a scatter plot and line of best fit using data from a spreadsheet.
\square Organize and display bivariate quantitative data using a scatter plot and extend from simple cases by hand to more complex cases involving a large data set using technology.
$\square \quad$ Create a scatter plot of data.
\square Calculate the fit of the function to the data by examining residuals.

Creating Functions to Model Change in the Environment and Society

Cluster	2019 Math COS Standard	
Functions can be used to represent general trends in conditions that change over time and to predict future conditions based on present observations.	16. Create a linear representation of non-linear data and interpret solutions, using technology and the process of linearization with logarithms.	
	Learning Objectives	Prior Knowledge Skills
	MMOD.16.1: Define linearization, linear, non-linear, exponential function, and logarithmic function. MMOD.16.2: Interpret solutions based on results. \square MMOD.16.3: Using technology create a linear representation of nonlinear data. \square MMOD.16.4: Using technology graph a logarithmic function. \square MMOD.16.5: Using technology graph an exponential function.	\square Define logarithmic and exponential function. Recognize the inverse relationship of logarithmic function and exponential functions. \square Define ordered pair, coordinate plane, polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions. \square Create equations with two variables (polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions). \square Graph equations on coordinate axes with labels and scales (polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.). \square Define linear function and exponential function. \square Distinguish between graphs of a line and an exponential function. \square Identify the graph of an exponential function.

Modeling to Interpret Statistical Studies		
Cluster	2019 Math COS Standard	
Statistical studies	17. Use the Statistical Problem-Solving Cycle to answer real-world questions.	
allow a conclusion	Learning Objectives	Prior Knowledge Skills
to be drawn about a population that is too large to survey completely or about cause and effect in an experiment.	MMOD.17.1: Formulate question. MMOD.17.2: Design study. MMOD.17.3: Collect data. MMOD.17.4: Communicate interpretations and limitations. MMOD.17.5: Interpret, refine variables and assumptions. MMOD.17.6: Analyze results.	\square Solve the equation represented by the real-world situation. \square Set up an equation to represent the given situation, using correct mathematical operations and variables. \square Given a contextual situation, interpret and defend the solution in the context of the original problem. \square Define equation, expression, variable, equality, and inequality.

Modeling to Interpret Statistical Studies

Cluster

Statistical studies allow a conclusion to be drawn about a population that is too large to survey completely or about cause and effect in an experiment.

2019 Math COS Standard

18. Construct a probability distribution based on empirical observations of a variable.

Example: Record the number of student absences in class each day and find the probability that each number of students will be absent on any future day.
a. Estimate the probability of each value for a random variable based on empirical observations or simulations, using technology.
b. Represent a probability distribution by a relative frequency histogram and/or a cumulative relative frequency graph.
c. Find the mean, standard deviation, median, and interquartile range of a probability distribution and make long-term predictions about future possibilities. Determine which measures are most appropriate based upon the shape of the distribution.

Learning Objectives

\square MMOD.18.1: Define center, mean, median, spread, interquartile range, standard deviation, data set, dot plots, histograms, empirical observations, and box plots.
\square MMOD.18.2: Make long-term predictions based on the calculations.
\square MMOD.18.3: Find the mean, standard deviation, median, and interquartile range. Determine which measures are most appropriate based upon the shape of the distribution.
\square MMOD.18.4: Represent the probability distribution by a relative frequency histogram and/or a cumulative relative frequency graph.
\square MMOD.18.5: Find the probability of each value for the random variable.

Prior Knowledge Skills

\square Define normal distribution, mean, standard deviation, and empirical rule.
$\square \quad$ Use technology to calculate mean and standard deviation.
\square Use technology (ex. calculator, Microsoft Excel, etc.) to estimate areas under the normal curve.
$\square \quad$ Analyze data sets to determine if appropriate.
$\square \quad$ Accurately find the center (median and mean) and spread (interquartile range and standard deviation) of data sets,
\square Present viable arguments and critique arguments of others from the comparison of the center and spread of multiple data sets.
$\square \quad$ Reason how standard deviation develops from the mean absolute deviation.
\square Define probability, ratio, simple event, compound event, and independent event.
$\square \quad$ Determine the probability of a compound event.
\square Determine the probability of an independent event.
\square Determine the probability of a simple event by expressing the probability as a ratio, percent, or decimal.

*Critical Standard

| | | Identify the probability of an event that is certain as 1 or
 impossible as 0. |
| :--- | :--- | :--- | :--- |
| \square | Solve word problems involving probability.
 \square
 Use proportional relationships to solve multi-step ratio and
 percent problems. | |
| | Recognize and represent proportional relationships as ratios
 between two quantities. | |
| | | |

Modeling to Interpret Statistical Studies

Cluster

Statistical studies allow a conclusion to be drawn about a population that is too large to survey completely or about cause and effect in an experiment.

2019 Math COS Standard

19. Construct a sampling distribution for a random event or random sample.

Examples: How many times do we expect a fair coin to come up "heads" in 100 flips, and on average how far away from this expected value do we expect to be on a specific set of flips? What do we expect to be the average height for a random sample of students in a local high school given the mean and standard deviation of the heights of all students in the high school?
a. Use the binomial theorem to construct the sampling distribution for the number of successes in a binary event or the number of positive responses to a yes/no question in a random sample.
b. Use the normal approximation of a proportion from a random event or sample when conditions are met.
c. Use the central limit theorem to construct a normal sampling distribution for the sample mean when conditions are met.
d. Find the long-term probability of a given range of outcomes from a random event or random sample.

Learning Objectives

\square MMOD.19.1: Define sample, validity, population, inference, random sampling, statistic, binomial theorem, binary event, generalization, normal approximation of a proportion, central limit theorem and normal sampling distribution.
\square MMOD.19.2: Explain the validity of random sampling.
\square MMOD.19.3: Differentiate the appropriate sampling method.
\square MMOD.19.4: Analyze attributes of sample size.
\square MMOD.19.5: Draw conclusions by finding the long-term probability of a given range of outcomes from a random event or random sample.

Prior Knowledge Skills

\square Define mean, standard deviation, population, sample, and correlation coefficient.
\square Define sample, validity, population, inference, random sampling, statistic, and generalization.
\square Identify the nature of the attribute, how it was measured, and its unit of measure.
\square Discuss real-world examples of valid sampling and generalizations.
\square Compare sample size with population to check for validity.
\square Analyze attributes of sample size.
\square Differentiate between appropriate sampling methods.
\square Explain the validity of random sampling.

Modeling to Interpret Statistical Studies

Cluster
Statistical studies

2019 Math COS Standard

20. Perform inference procedures based on the results of samples and experiments.
a. Use a point estimator and margin of error to construct a confidence interval for a proportion or mean.
b. Interpret a confidence interval in context and use it to make strategic decisions.

Example: short-term and long-term budget projections for a business
c. Perform a significance test for null and alternative hypotheses.
d. Interpret the significance level of a test in the context of error probabilities and use the results to make strategic decisions.
Example: How do you reduce the rate of human error on the floor of a manufacturing plant?

Learning Objectives

\square MMOD.20.1: Define samples, inference, experiments, point estimator, margin of error, confidence interval, proportion, mean, null and alternative hypotheses, significance test and error of probabilities.
\square MMOD.20.2: Interpret the significance level of a test in the context of given error probabilities.
\square MMOD.20.3: Differentiate the appropriate sampling method.
\square MMOD.20.4: Given a point estimator and margin of error, determine confidence interval.
\square MMOD.20.5: Given data, perform and interpret a significance test for null alternative hypotheses.
\square MMOD.20.6: Use the given results to make strategic decisions.
\square MMOD.20.7: Collect and organize data for analysis.

Prior Knowledge Skills

\square Identify the attribute used to create the numerical set.
\square Organize the data.
\square Collect the data.
\square Compare and contrast the center and variation.
\square Define numerical data set, quantitative, measure of center, median, frequency distribution, and attribute.
\square Define margin of error and confidence interval.
\square Justify the mathematical and statistical reasoning.

Modeling to Interpret Statistical Studies		
Cluster	2019 Math COS Standard	
Statistical studies allow a	21. Critique the validity of reported conclusions from statistical studies in terms of bias and random error probabilities.	
conclusion to be	Learning Objectives	Prior Knowledge Skills
drawn about a population that is too large to survey completely or about cause and effect in an experiment.	\square MMOD.21.1: Define validity, conclusions, bias, and random error probabilities. \square MMOD.21.2: Critique the validity of reported conclusions. \square MMOD.21.3: Describe processes that can be used to make fair decisions.	Define and discuss bias. Compare and contrast statistical situations to determine if statistical bias exists. Define bias (sampling, response, or nonresponse bias). Interpret survey results. Determine where bias may occur.

Modeling to Interpret Statistical Studies

Cluster	2019 Math COS Standard	
Statistical studies allow a conclusion to be drawn about a population that is too large to survey completely	22. Conduct a randomized study on a topic of student interest (sample or experiment) and draw conclusions based upon the results. Example: Record the heights of thirty randomly selected students at your high school. Construct a confidence interval to estimate the true average height of students at your high school. Question whether or not this data provides significant evidence that your school's average height is higher than the known national average and discuss error probabilities.	
	Learning Objectives	Prior Knowledge
	MMOD.22.1: Define sample, experiment, randomized study, outliers, and scatterplot. MMOD.22.2: Predict probabilities based on the effect of outliers on the data. MMOD.22.3: Evaluate and draw conclusions based on the collected data. MMOD.22.4: Create a model of a set of data. (i.e., Google form, table, curve, scatterplot)	\square Identify outliers for the mean and standard deviation. Compare and contrast the random sampling data to the population. \square Analyze conclusions of the sample to determine its appropriateness for the population. Predict an outcome of the entire population based on random samplings. \square Justify mathematical and statistical reasoning.

